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Abstract
Info-Gap is purported to be a new theory for decision-making under severe
uncertainty. Its claim to fame is that it is non-probabilistic in nature and thus
offers an alternative to all current theories for decision-making under uncer-
tainty. In this essay I examine this theory from an Operations Research point
of view. I show that:

- Info-Gap is neither new nor radically different from current decision theo-
ries. Specifically, I formally prove that Info-Gap’s decision theoretic model
is a simple application of Wald’s Maximin Principle, the most celebrated
Principle in decision-making under strict uncertainty.

- Info-Gap’s uncertainty model is fundamentally flawed and consequently
there is no reason to believe that the solutions it generates are likely to
be robust.

Apparently Info-Gap followers are unaware of the huge discrepancy (gap?)
between what Info-Gap claims to be and do and what it actually is and does.

The lesson for Operations Research is that it cannot take it for granted that
its established methods and techniques stand ready to be adapted into other
disciplines.

Keywords: voodoo decision-making, severe uncertainty, maximin, worst-case anal-
ysis, robust optimization, Pareto tradeoffs, non-probabilistic methods, info-gap.

*This paper was presented at the 2006 ASOR Recent Advances mini-conference, December 1,
2006, Melbourne, Australia.
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1 Prologue

On several occasions over the past three years I have been asked to express my views
on Info-Gap. The reactions to my position have surprised me, and I find myself in a
situation where I need to devote a considerable effort to explain this position.

The publication this year of the second edition of the Info-Gap book (Ben-Haim
[2006]) convinced me that I should make these views more accessible to Info-Gap
enthusiasts and to the public at large.

So here is what I have to say.

I presented this essay under the titled What exactly is Info-Gap? An Operational
Research Perspective at the 2006 ASOR Recent Advances mini-conference (Dec 1,
2006, Melbourne Australia).

My plan is to ultimately integrate it into a short book entitled “Worst-Case Anal-
ysis for decision-making Under Severe Uncertainty”. When ready, I'll put it on my
website so that I can update it from time to time. This will be an on-going project.
The URL of this book and related resources is

www.ms.unimelb.edu.au/~moshe/frame_maximin.html

The site is now open to the public. If everything goes according to plan, the book
should be ready before the end of 2007.

The target audience of this mini-campaign is mainly the group of dedicated Info-
Gap devotees out there who actually believe that Info-Gap is cool. My objective is
not to convert them — God forbid — to another decision-making Religion.

I realize that this is a mission impossible.

My objective is much less ambitious: I believe that the Info-Gap community badly
needs a short and focused introspection session, the aim of which is two-fold:

- To look behind the Info-Gap jargon and highfalutin declarations with a view
to identify what Info-Gap in fact does.

- To examine how Info-Gap’s way of doing things is related to other methods and
techniques used for the modeling, analysis and solution of problems involving
decision-making under severe uncertainty.

I argue that this is long overdue.

Now, before I express my thoughts on Info-Gap, it is important that I tell you
something about ... myself, namely my involvement and interest in Info-Gap.

The thing is that I am not interested in Info-Gap as such. I have my hands
full with other projects and I do not plan at this stage to add Info-Gap to my list
of research/teaching interests. But one of those other projects that I am working
on is the promotion of Operations Research (OR) as an academic discipline and a
profession, both locally in Australia and internationally. To clarify: OR is not my
religion — it is merely my profession.

Why am I telling you these very personal things?



I am telling you this because in my view the Info-Gap literature exhibits serious
misconceptions about the state of the art in Operations Research and related areas
of applied mathematics. What is more disturbing though is that this literature also
exhibits serious misconceptions about the state of the art in CLASSICAL DECISION
THEORY proper.

It is important, however, that you do not misconstrue this fact. As I indicated
above, [ am not trying to convert you here and now to a new decision-making Religion
or to give the old theory a second chance. To the contrary, my message is that if
you carefully examine what Info-Gap actually does — in contrast to what it claims it
does — you very quickly discover that ...there is nothing new under the sun. So, no
conversion is necessary.

What is necessary though is to appreciate the body of knowledge that classical
decision theory already offers us. There is no need to re-invent the wheel.

To repeat, in my view, the most disturbing aspect of Info-Gap is its failure to
appreciate the fact that classical decision theory already offers a probabilistic-free
approach to decision-making under severe uncertainty.

Another difficulty with Info-Gap is that it is self contradictory: it advises us to
refrain from doing precisely that which its generic recipe instructs us to do.

Time Out!

I have been asked on a number of occasions the following intriguing questions:

FAQ 1 How do you explain the fact that all those things have not been discovered so
far? How do you explain the fact that this theory has already been embraced by so
many people?”

These are very good questions and I shall be delighted to discuss them with you
over a cup of coffee. However, I shall not address them in this essay. The only thing
I can say here is that the facts that I bring to light speak for themselves.

The objective of this longish essay is to give you, dear reader, something to think
about. As I indicated above, I plan to put a copy of a book on this topic on my
website so you should regard this essay as a pre-release trailer of the full monty.

For the benefit of readers who are too busy to read this essay in full, here is a
summary of what is on the agenda in this discussion:

Section 1. Prologue
This section.

Section 2.  Worst-Case Analysis
Informal discussion on the “play it safe” approach to decision-making
under uncertainty.

Section 3. decision-making Under Strict Uncertainty
Description of the generic problem associated with decision-making
under strict uncertainty.

Section 4. What is Info-Gap?
Explanation of Info-Gap’s prescription for tackling decision-making sit-
uations subject to severe uncertainty. A description of its generic model
and a discussion of a number of apparent difficulties with this theory.
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Section 5.

Section 6.

Section 7.

Section 8.

Section 9.

Section 10.

Section 11.

Section 12.

Section 13.

Things that are definitely wrong in Info-Gap

Two things are mentioned that are definitely not-right, namely wrong,
in Info-Gap. The first is that rather than being a new theory, Info-Gap
is an instance of the more than 60 year old Wald’s Maximin Princi-
ple. The second is that Info-Gap’s uncertainty model is fundamentally
flawed so that there is no ground to believe that the solutions generated
by Info-Gap are likely to be robust.

Wald’s Maximin Principle

A formal look at this stalwart of decision theory.

Maximin vs Info-Gap

A formal proof that the generic Info-Gap model is an instance of the
generic Maximin model.

Practice What You Preach!

Explanation outlining the grounds for doubting the robustness of the
solutions generated by Info-Gap and a reminder that by employing a
single point estimate of the unknown true value of a parameter Info-
Gap practices the opposite of what it instructs us against.

Satisficing vs Optimizing

A formal proof is provided that any satisficing problem can be easily
transformed into an equivalent optimization problem, hence Info-Gap’s
“satisficing is better than optimizing” campaign is counter productive.
Probabilistic vs Non-probabilistic Models

A reminder that any uncertainty model based on Wald’s Mazimin
Principle is, at bottom, probabilistic in nature. Therefore it is not sur-
prising at all that Info-Gap’s model of uncertainty has an intuitively
simple probabilistic interpretation and formal representation.
Discussion

A summary of the implications of the conclusions from the preceding
sections.

Bibliographical Notes

A short discussion on the references cited in this essay.

Epilogue

Wrap-up of the discussion with some conclusions regarding Info-Gap
and the lessons the OR community should draw from it.

Appendix A. The Art and Science of Worst-case Analysis

A formal analysis of the claims that Info-Gap is not Maximin, show-
ing that these claims are based on misconceptions about worst-case
analysis and its application in Info-Gap.

Enjoy the tour.

2 Worst-Case Analysis

Whether we like it or not, worst-case analysis is an intuitive and important conceptual
decision-making framework. It is definitely one of the most basic and well-studied



tools of classical decision theory. And if you are in the business of decision-making
under severe uncertainty, you cannot leave home without it.

But worst-case analysis is applicable outside decision theory as well. For example,
this kind of analysis dominates areas such as computational complexity theory and
analysis of algorithms (see Cormen at al [2001] for details).

Of course the origins of this basic idea predate modern decision theory. As noted
by Rustem and Howe (2002):

The gods to-day stand friendly, that we may,
Lovers of peace, lead on our days to age!

But, since the affairs of men rest still incertain,
Let’s reason with the worst that may befall.

William Shakespeare (1564 - 1616)
Julius Caesar, Act 5, Scene 1

In less poetic terms, this basic concept is encapsulated in the popular adage When
in doubt, assume the worst!

Here is the first section of the page generated by WIKIPEDIA for the search of
the phrase worst-case analysis:

In computer science, best, worst and average cases of a given algorithm
express what the resource usage is at least, at most and on average, re-
spectively. Usually the resource being considered is running time, but it
could also be memory or other resource.

In real-time computing, the worst case execution time is often of particular
concern since it is important to know how much time might be needed
in the worst case to guarantee that the algorithm would always finish on
time.

Average performance and worst-case performance are the most used in
algorithm analysis. Less widely found is best-case performance, but it
does have uses, for example knowing the best cases of individual tasks can
be used to improve accuracy of an overall worst-case analysis. Computer
scientists use probabilistic analysis techniques, especially expected value,
to determine expected average running times.
http://en.wikipedia.org/wiki/Worst_case_analysis

The following is the complete abstract of a paper entitled Specifying design con-
servatism: Worst case versus probabilistic analysis:

Design conservatism is the difference between specified and required per-
formance, and is introduced when uncertainty is present. The classical
approach of worst-case analysis for specifying design conservatism is pre-
sented, along with the modern approach of probabilistic analysis. The
appropriate degree of design conservatism is a tradeoff between the re-
quired resources and the probability and consequences of a failure. A
probabilistic analysis properly models this tradeoff, while a worst-case



analysis reveals nothing about the probability of failure, and can signif-
icantly overstate the consequences of failure. Two aerospace examples
will be presented that illustrate problems that can arise with a worst-case

analysis.
Miles [1993]
http://adsabs.harvard.edu/abs/1993gdss.proc..703M

And here is a short quote from the NASA Office of Logic Design website:

Goals

* Detailed design review and worst-case analysis are the best tools for
ensuring mission success.

* The goal here is not to make more work for the designer, but to:

@)

Enhance efficiency of reviews

@)

Make proof of design more clear

o

Make design more transferable

o

Improve design quality

http://klabs.org/DEI/References/design_guidelines/design_analysis_test_guides.htm

In short, worst-case analysis figures prominently wherever truly tough decisions
are to be made in the face of severe uncertainty.

It is therefore puzzling that the Info-Gap books keep mum on this stalwart of
classical decision theory.

Perhaps the explanation for this omission is that Info-Gap actually holds that in
the framework of its uncertainty model there is no worst case at all:

It is important to emphasize that the robustness iL(R, ¢) is not a minimax
algorithm. In minimax robustness analysis, one minimizes the maximum
adversity. This is not what info-gap robustness does. There is no maximal
adversity in an info-gap model of uncertainty: the worst case at any hori-
zon of uncertainty h is less damaging than some realization at a greater
horizon of uncertainty. Since the horizon of uncertainty is unbounded,
there is no worst case and the info-gap analysis cannot and does not pur-
port to ameliorate a worst case.

Ben-Haim [2005, p. 392]

What would you say then, dear reader, if T tell you (see Appendix A) that the
argument

“...Since the horizon of uncertainty is unbounded, there is no worst case ...”
is not only misleading but downright absurd?

And what would you say, dear reader, if I tell you that when you clear away the
fog so as to enable you to make sense of what is actually going on there, you’ll find
that Info-Gap is no more and no less than ... worst-case analysis a 1l& Mazximin?
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This, no doubt, may greatly disappoint you, as it did in my case, when I discovered
this fact for the first time. I was expecting better from a theory that presents itself
as new and radically different from all current decision theories.

The sad thing is that Info-Gap itself is not aware of this fact.

The end result is that you do not find any reference, hint, suggestion or indication
in the official Info-Gap literature (Beb-Haim [2001, 2006] ) that this supposedly new
theory is basically ... worst-case analysis. But this, dear reader, is all that Info-Gap
is.

The trouble is that in view of its numerous declarations in the abstract, revealing
the true nature of Info-Gap is not an easy job. The job is further complicated by the
fact that although the notion worst-case analysis is simple and intuitive, contrary to
its appearance, it is highly flexible from a mathematical modeling point of view. So
if you do not have first hand experience with it you may underestimate what it can
do for you as a modeling paradigm.

In case you are completely unfamiliar with worst-case analysis, here is how it is
described by the philosopher John Rawls in the discussion on his theory of justice:

The maximin rule tells us to rank alternatives by their worst possible
outcomes: we are to adopt the alternative the worst outcome of which is
superior to the worst outcome of the others.

Rawls [1971, p. 152]

Of course Maximin is a fancy technical term used to describe the most classical
type of worst-case analysis. It reflects the fact that the duo max and min appear
next to each other in the problem statement.

Such problems were studied extensively in the late 1920s by von Neumann [1944]
in connection with his work on Game Theory, more specifically zero-sum 2-person
games.

With a stroke of imagination, Wald [1945a] introduced this notion into decision
problems under uncertainty by regarding Nature as the second, antagonistic player,
representing uncertainty.

We shall discuss the relevant aspects of Maximin theory in due course.

In preparation for our formal analysis of Info-Gap, we quickly examine in this
section three examples illustrating worst-case analysis in action. The first example
is straightforward, in fact naive. The second is a bit more subtle, and the third
represents the type of worst-case analysis associated with classical Mazimin problems.

The objective of this preliminary discussion is to pave the way for an analysis of
deciston-making under severe uncertainty.

However, as we shall see, the scope of operation of worst-case analysis and Maax-
imin formulations goes beyond decision-making under uncertainty. The key term
here is variability rather than uncertainty, observing that variability is not necessar-
ily triggered by uncertainty.

And now to the first, very simple, textbook example of a worst-case analysis.



2.1 Example

Suppose that one fine morning you find a note and four envelopes on your doorstep.
The full text of the note is displayed below. Table 1 depicts the information Joe
provided on the four envelopes.

Good morning Sir/Madam:

I left on your doorstep four envelopes. Each contains some money. You
are welcome to open any one of these envelopes and keep the money
you find there.

Please note that as soon as you open an envelope the other three will
automatically self-destruct, so think carefully about which of these en-
velopes you should open.

To assist you with your decision, I printed on each envelope the possible
values of the amount of money (in Australian dollars) you may find in
it. The amount that is actually there is equal to one of these figures.

Unfortunately the entire project is under severe uncertainty so I cannot
tell you more than this.

Good luck!
Joe.
Full text of Joe’s Note
Envelope | Possible Amounts (Australian dollars)
E1l 20, 10, 300, 786
E2 2,4000000, 102349, 500000000, 99999999, 56435432
E3 201,202
E4 200

Table 1: Easy Problem

So what do you do Dear Sir/Madam? Which envelope should you open?

Let us see what will happen if we decide to resolve this dilemma via worst-case
analysis. Observe then that conceptually this analysis involves two steps:

- Determine the worst outcome for each of the decisions available to us.
- Select the decision whose worst outcome is best.

Here is how we organize in a tabular form the data and the results for our little



problem:

Envelope ‘ Possible Amounts ‘ Worst outcome | Best worst outcome

E1l 20,[10], 300, 786 10

E2 ,4000000, 10234 2

E3 , 202 201 201
E4 200 200

According to this back-of-the-envelope analysis, we should open E3. Our analysis
indicates that the worst that can happen in this case is that we shall find 201 Aus-
tralian dollars in the envelope. This is better than the worst case outcomes associated
with the other three envelopes.

2.2 Example

You plan to buy a present for you dog Rex, a beautiful 7 year old German shepherd.
This year you decided to buy him an educational game. There are two brands in
your local pet shop, Charisma and Agility. The manuals for these games provide the
operating charts shown in Figure 1. The games are suitable only for dogs whose Bl
and /Q scores are within the shaded areas on the charts'.

The question is: which brand should you buy for Rex — €hatisma or Agility?

BI radius = 3 BI radius — 3.5
5 4
4 £
6.5 1Q 75 IQ
Recommended operating region Recommended operating region
Chatisma Agility

Figure 1: Operating Charts for the two brands

We shall now discuss briefly four versions of this problem. Three are associated
with different levels of uncertainty pertaining to Rex’s BI and I() scores, and one is
totally unrelated to uncertainty.

Version 1: Certainty.

IBI is short for Barking Index.

10



Here we assume that we have the exact scores for Rex. The choice seems to be
obvious: we can choose any brand as long as Rex’s scores are within the specified
operating region of the brand.

Version 2: Strict Uncertainty.

Suppose that we have no information at all about Rex’s scores. Given the extreme
level of uncertainty, it seems that the best thing to do is to go for the brand whose
operating region is the largest. In our case this is the operating region of 2gility, so
it looks like this would be the best choice.

Version 3: Pretty good estimates.

Suppose that we do not have the exact values of Rex’s scores, but we do have
pretty good estimates of these scores. Let a denote the estimate of the () score and
let b denote the estimate of the BI score. In this case we may wish to play it safe
and select the brand providing the largest SAFE deviation from the estimates.

I illustrate the worst-case analysis graphically. You are encouraged to do it ana-
lytically on your own.

Suppose that the two estimates are (a,b) = (6,6). How far can we go from these
estimates and still be in the operating region of a brand? To answer this question,
we can draw circles centered at the point (6,6) on the charts. We increase the radius
of these circles until they are not FULLY contained in the operating regions, as shown
in Figure 2.

Clearly, for these estimates €hatisma seems to be far safer as the radius of the
largest safe circle on its chart is much larger than the radius of the largest safe circle
on the Agility chart.

BI BI

6.5 1Q 75 1Q
Charisma gility

Figure 2: worst-case analysis

It is important to note that if the estimates available are not good, the analysis
could be much more complicated. For example, suppose that the estimates are poor
and all we know is that the true values are somewhere on the line segment connecting
the two end points (6,6) and (9,5) on the 1Q)/BI plane.

Figure 3 displays the worst-case analysis for these two end points. Note that
Charisma seems to be the better brand for the point (6,6) whereas 2gility seems to
be the better brand for the point (9, 5).
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BI BI

Chatisma Agility

Figure 3: worst-case analysis

So, which brand should you buy for Rex?

The next version we examine is wholly unrelated to uncertainty. I discuss it so
as to emphasize that the scope of worst-case analysis goes beyond problems dealing
with uncertainty.

Version 4: Variability

Consider the case where before you went shopping with Rex, you called Jack the
Vet and were told that Rex’s scores are precisely 7 for the Q) and 7 for BI.

What do you do in this case?

Since both brands are suitable for Rex in this case, it really makes no difference
which brand you decide to buy. But, on second thought, how about ... Rex’s
friends? They always play with Rex’s toys and games.

In view of this additional consideration, you now want a brand that will be suitable
not only for Rex, but also for his friends. In short, you want a brand that will be
suitable for Rex but capable of handling the largest possible variability from Rex’s
scores. Since Rex’s friends have similar 1¢) and BI scores, you decided to conduct
the worst-case analysis in the immediate neighborhood of Rex’s scores on the 1Q)/BI
plane.

So formally, you are interested in the brand whose operation chart can cope (safely)
with the largest deviation from the point (7,7) on the IQ/BI plane.

The solution generated by the worst-case analysis for this version of the problem
is shown in Figure 4. The clear winner is no doubt €harisma, and so it looks like Rex
and his friends will play €hatisma for the rest of the year.

As promised by the manufactures, this should increase their 1Q) scores and de-
crease their BI scores.?

2.3 Example

Suppose that you want to maximize a function f over a domain Z = X xY where X
and Y are some given sets. The difficulty is that you have control only over z € X,

2In subsequent papers on this subject I'll report on Rex’s progress on the 1Q/BI front.
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BI BI

7 1Q 7 1Q
Chatisma Agility

Figure 4: worst-case analysis

so if you select some = € X your payoff is f(z,y) where y is selected from Y by a
process, call it P, over which you have no control. Furthermore, when you select
x € X you do not know what value of y will be selected by P. The only thing that
you do know is that P will select y from Y. We therefore regard Y as the region of
uncertainty.

What should you do? What is the best x in X from your perspective?

Should you decide to resolve this dilemma by a worst-case analysis, you will assume
that if you select x € X, then P will select the worst value of y in Y pertaining to
x. Since you attempt to maximize your payoff, this means that P will select a y in
Y that minimizes your payoff, given that you selected x.

In short, under this scheme, if you select x € X, your payoff will be

p(x) = min f(x,y) (1)

So your best policy is to select an x € X that maximizes p(x). The recipe for
such a decision, call it z*, is then as follows:

z" ;= arg max p(z) (2)
= ] 3
arg max min f(z,y) (3)

For instance, consider the case where X =Y =R and

fla,y) = —(r —4)" + 2oy + ¢ (4)
where R denotes the real line.
Then,
p(:c):zrréi)r/l—(x—4)2+2:cy+y2, reR (5)
Yy
It is easy to verify that y = —x is the minimizing y, hence
pla) i = (o — 47 + 20y + 97|, __, (6)
= —(v = 4)* + 2z(~2) + (—2)* (7)
= —22% 4+ 8x — 16 (8)
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Therefore,
¥ = arg max —22% 4+ 87 — 16 9)
4SS
=2 (10)

This means that under the worst-case scenario it is best for you to set z* = 2.
The worst outcome (payoff) pertaining to this decision is

p(z*) = —22° + 8z — 16| __, (11)
= -8 (12)

Regarding the assertion (Ben-Haim [2005]) that no worst case exists if the region
of uncertainty is unbounded, note that the region of uncertainty here, namely ¥ = R,
is unbounded, yet there is definitely a worst case for each decision. For more on this
issue see Appendix A.

2.4 Mathematical formalism

There are various ways to formalize, in a rigorous mathematical manner, the basic
idea behind worst-case analysis. We shall do it shortly.

For the time being let us recall that in the context of decision-making problems,
worst-case analysis consists of two interrelated but distinct tasks:

- Evaluation of each alternative (decision) under the worst-case scenario pertain-
ing to it.

- Selection of the alternative (decision) whose worst-case performance is best.

Typically, each of these two tasks involves optimization and, as implied by the term
Maximin, the nature of the optimization — whether it is mazimization or minimization
— is reversed in these two logical steps. If one involves mazimization then the other
involves minimization and vice versa.

To explain this feature, let D denote the set of feasible decisions available to the
decision maker and let S(d) denotes the set of all possible scenarios pertaining to
decision d. Also, suppose that the decision maker is interested in maximizing (with
respect to d) a real valued function f whose arguments are d and s € S(d). In this
case, the worst-case scenario for decision d is a scenario s* € S(d) that minimizes
f(d,s) over S(d).

This means that the worst-case analysis will assign to decision d € D the following
payoft:

v(d) == srerg(r(li)f(d’ s),deD (13)

It is the smallest payoff for decision d with respect to the set of scenarios associated
with it, S(d). In this framework the best decision is one whose v(d) value is the largest.
This setup leads to the Mazimin Rule mentioned in the quote from Rawls [1971].
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If the decision maker is interested in minimizing the objective function f, then
the worst-case scenario for decision d would be a scenario s* that mazimizes f(d, s)
over S(d). Hence, the worst-case analysis will assign to decision d € D the following
payoft:

w(d) := max f(d,s), deD (14)
seS(d)

In this case the best decision is one whose w(d) value is the smallest. This leads
to the Minimax Rule.

We shall focus on the Mazimin formulation, observing that Minimaz formulation
can be obtained in a similar manner simply by reversing the mode of the optimization:
max is transformed to min and vice versa.

Now, according to this preliminary analysis, it looks like the process of setting
up a worst-case analysis for a given decision-making problem is a straightforward
matter. All we have to do is formulate three objects:

- A decision space, namely a set D consisting of all the decisions available to us.

- A collection of sets (S(d),d € D), where S(d) denotes the set containing all the
scenarios associated with decision d.

- An objective function, f, assigning a reward, f(d, s), for each (decision,scenario)
pair.

In short, for the purposes of our discussion it is convenient to formulate the generic
worst-case analysis model as follows:
v* :=max min f(d,s 15
deD  seS(d) f(d;s) (15)
In this framework S(d) is interpreted as the region of uncertainty pertaining to
decision d.

Experience has shown that the construction of such models for real-world decision
problems under severe uncertainty is not a trivial matter. Like other mathematical
modeling enterprises, it is often ... easier said than done.

As an exercise, dear reader, you may wish to set up a formal model for the
worst-case analysis we conducted in the preceding section in connection with the Rex
problem. If you have not done such things before, you may find this exercise a rather
challenging mathematical modeling project.

2.5 Discussion

The body of knowledge available to us on worst-case analysis is enormous. Therefore
it is important to be clear on whether a decision-making methodology we plan to use
is based on this type of analysis. Furthermore, since Wald’s Mazimin Principle is the
most classical paradigm for worst-case analysis, it is also important to identify the
Maximin content, if any, of such a methodology.

Indeed, this is imperative in view of the gentlemen’s agreement that decision-
making based on worst-case analysis or Mazimin is often much too conservative:

15



It should be mentioned that Wald advocated the minimax principle in a
tentative way and because of certain formal advantages. I am informed
that he was still interested in finding a less conservative and more satis-
factory principle for statistical inference.

To my mind, it is somewhat doubtful if principles of this kind are really
applicable in the social sciences [26]. They are without any doubt appli-
cable in industrial applications (quality control, etc.)

Tintner [1952, p. 24|

and

It should also be remarked that the minimax principle even if it is appli-
cable leads to an extremely conservative policy.
Tintner [1952, p. 25]

The reference to “social sciences” is interesting not the least because of the role
Wald’s Maximin Prilciple plays in Rawls’ [1971] Theory of Justice.

The following quotes eloquently summarize the on-going debate on “expected
value optimization vs worst-case analysis via maximin” dilemma:

The conventional approach to decision under uncertainty is based on ex-
pected value optimization. The main problem with this concept is that it
neglects the worst-case effect of the uncertainty in favor of expected val-
ues. While acceptable in numerous instances, decisions based on expected
value optimization may often need to be justified in view of the worst-case
scenario. This is especially important if the decision to be made can be
influenced by such uncertainty that, in the worst case, might have drastic
consequences on the system being optimized. On the other hand, given
an uncertain effect, some worst-case realizations might be so improbable
that dwelling on them might result in unnecessarily pessimistic decisions.
Nevertheless, even when decisions based on expected value optimization
are to be implemented, the worst-case scenario does provide an appropri-
ate benchmark indicating the risks.

Rustem and Howe [2002, p. xiii]

Through its inherent pessimism, the minimax strategy may lead to a se-
rious deterioration of performance. Alternatively, the realization of the
worst-case scenario may result in an unacceptable performance deterio-
ration for the strategy based on expected value optimization. Neither
minima nor expected value optimization provide a substitute for wisdom.
At best, they can be regarded as risk management tools for analyzing the
effects of uncertain events.

Rustem and Howe [2002, p. xiv]

As we shall see, Info-Gap seems to be unaware of the fact that it is a Mazimin
Principle in disguise. It is not surprising therefore that the Info-Gap literature is to-
tally oblivious to the wealth of knowledge available on the limitations and problematic
aspects of worst-case analysis.
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This is a pity because this very rich knowledge-base is definitely relevant to the
way things are done in Info-Gap.

In the next section we take a quick look at decision-making under strict uncer-
tainty. This will pave the way for a formal examination of Info-Gap.

3 Decision-making Under Strict Uncertainty

Who is a wise man? He who sees that which will happen!
Talmud, Tamid 32(a)

Classical decision theory distinguishes between three types of decision-making
situations:

- decision-making under certainty.
- decision-making under risk.

- decision-making under strict uncertainty.

The first case represents situations where we pretend that no uncertainty exist at
all in the decision-making situation.

The second case represents situations where the uncertainty in the decision-making
situation can be described and quantified by conventional statistical and probabilistic
models and/or methods.

The third case is the most difficult. Here our knowledge of the consequences of
our decisions is poor to such an extent that there is precious little to work with in
order to develop a solid, comprehensive, and useful decision-making methodology.

The classical model for situations of this kind is therefore very austere. It consists
of three very simple ingredients:

- a DECISION SPACE, D;
- a STATE SPACE, S;

- a REWARD FUNCTION, f;

where D and S are some sets and f is a real valued function on D x S.

The conceptual model is this: you, the decision maker (DM), must select a decision
d € D. In return you obtain a reward f(d,s) whose value depends on your decision
as well as on the state of nature s € S. The difficulty is that the true value of the
state s is under strict uncertainty, meaning that we are ignorant of the true value of
s, hence of the true value of the reward f(d, s).

So what do we do?

Needless to say, classical decision theory proposes no magic wand to tackle such
situations. What it does offer is a pair of fundamental approaches, to wit PRINCIPLES,
that can be considered in situations like this. Over the years these two principles have
become famous, some would say infamous, because both are very problematic. In any
case, here is the celebrated duo:
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- Laplace’s Principle of insufficient Reason (1825)
- Wald's NMagimin Principle (1945)

In brief, Laplace’s Principle suggests that if you really have no inkling as to the
true state of nature, then it is reasonable to assume that all the states are equally
likely. This means that you can regard the state variable s as a random wvariable
associated with a uniform probability distribution function over the state space S.
There are of course cases where this is impossible, eg. S = R, where R denotes the real
line, observing that it is impossible to create a uniform probability density function
on R.

The appeal of this principle is that it transforms a difficult problem (decision-
making under strict uncertainty) into a relatively “easy” problem (decision-making
under risk).

The Mazimin Principle goes much further than that: it transforms a decision-
making situation under strict uncertainty into a decision-making situation under cer-
tainty.

It performs this trick by following my dear wife’s dictum: in situations under strict
uncertainty, it 1s reasonable to assume that the WORST possible thing will happen.
That is, this principle assumes that MOTHER NATURE is playing against us in that
it always selects the least favorable state s € S pertaining to our choice of d € D.
This, of course, is a very pessimistic view of how Mother Nature works.

The appeal of this principle is that it transforms a difficult problem (decision-
making under strict uncertainty) into a “very easy” problem (decision-making under
certainty). That is, we exploit the fact that Mother Nature is antagonistic to such
an extent that it becomes completely predictable. This removes the uncertainty
altogether and we are left with a simple deterministic problem.

In summary, these are the two basic principles offered by classical decision theory
for decision-making under strict uncertainty. Of course, there are many variations on
these two basic themes.

Now, since Info-Gap claims to be a new theory, one that is radically different
from all current decision theories, we expect it to be radically different from these
two principles. And since it claims to be a probabilistic-free theory, it is only natural
to expect info-Gap to explain in what way it radically differs from Wald’s Maximin
Principle.

But as we shall soon see, contrary to its claim, Info-Gap offers no new, radical
and exciting ideas. And what is more alarming is its failure to recognize its close
affinity to worst-case analysis and Wald’s Maximin Principle.

Having examined, albeit very briefly, the two basic principles provided by decision
theory for decision-making under severe uncertainty, let us now examine the basic
ideas behind Info-Gap.

Fasten your seat belts!
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4 What is Info-Gap?

To reiterate, Info-Gap is supposedly a brand new methodology for generating ro-
bust solutions to problems depicting situations under severe uncertainty. The main
references are the two editions of the book by Ben-Haim [2001, 2006].

To give you a flavor of how Info-Gap views itself vis-a-vis classical theories for
decision-making under uncertainty, here are some quotes from the 2nd edition of the
Info-Gap book.

Regarding its radical departure from all the classical theories:

Info-gap decision theory is radically different from all current theories of

decision under uncertainty. The difference originates in the modelling of

uncertainty as an information gap rather than as a probability.
Ben-Haim [2006, p.xii]

The alternative it offers to the more classical decision theories and its big leap
forward:

In this book we concentrate on the fairly new concept of information-gap
uncertainty, whose differences from more classical approaches to uncer-
tainty are real and deep. Despite the power of classical decision theories,
in many areas such as engineering, economics, management, medicine and
public policy, a need has arisen for a different format for decisions based
on severely uncertain evidence.

Ben-Haim [2006, p. 11]

Its new perspective on classical decision theories:

The emergence of info-gap decision theory as a viable alternative to prob-
abilistic methods helps to reconcile Knight’s dichotomy between risk and
uncertainty. But more than that, while info-gap models of severe lack of
information serve to quantify Knight’s ‘unmeasurable uncertainty’, they
also provide new insight into risk, gambling and the entire pantheon of
classical probabilistic explanada. We realize the full potential of the new
theory when we see that it provides new ways of thinking about old prob-

lems.
Ben-Haim [2006, p. 342]

And the follow-up:

Conversely, the greatest difficulty in assimilating the new methodology
of info-gap decision theory is presented by classical problem-formulation
which are incompatible with the new approach. This incompatibility re-
sults primarily from the fact that classical methods capture only part of
the phenomena of uncertainty: probabilistic theories generate probabilis-
tic questions, while uncertainty is not exclusively probabilistic.
Ben-Haim [2006, p. 342]
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Got the drift?
Now, back to earth.

Info-Gap deals with the following abstract decision-making situation (I deliber-
ately employ Info-Gap’s standard notation): You have to select a decision g € Q.
In return you obtain a reward R(q,u) that depends on ¢ but also on a parameter u
whose true value is unknown and subject to severe uncertainty. It is assumed that
the larger the reward the better it is.

So the question is: what do you do? What is the best decision?

To answer this question Info-Gap introduces two additional parameters, and a
family of nested sets, namely:

- A critical reward value, 7.
- An estimate @ of the true value of wu.

- A parametric family of nested sets U(a, @) C U, a0 > 0.

The generic Info-Gap model based on these constructs can be formulated math-
ematically as follows: First we have a recipe for determining the robustness of any
given decision ¢ € Q:

a(q,r.) := max {a :Te < min R(q,u)} (16)
uel (o, )
And then we are instructed that the best thing to do is to select the decision
whose robustness is the largest:

a(ry) == max a(q,u). 17

(re) = max (a7 a7)

Interpret this model as follows: we must select a decision ¢ from a given set of

feasible decisions Q. The reward generated by a decision, R(q,u), depends on the

value of some parameter u € {. In selecting ¢ we have to make sure that the reward
is not below a given critical value r..

So far so good.

The difficulty is that the true value of u is unknown and is subject to
uncertainty. All we have is a estimate, 4, of the true value of u, and this
estimate is likely to be [SUBSTANTIALLY WRONG |.

So what should we do?

We create nested regions of uncertainty, U(«, 4),« > 0, around the estimate u
with the property that (0, a) = {a} and U(c, @) is increasing in size with a, namely
a > o implies U (o', 4) € U(a, ). Intuitively regard o as a measure of the “size” of
the region U(a, @).

Using these regions of uncertainty we define the robustness of a decision ¢ as the
largest value of « such that the reward requirement r. < R(q,u) is satisfied for all
uelU(a,n).
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We use the robustness as the preference criterion for the selection of the best
decision, namely the best decision is one whose robustness is the largest.

The notation &(q,7.) and &(r.) indicates that the critical reward r. should be
viewed as a “soft” requirement. In order to determine which value should be used to
decide on the best decision, it might therefore be necessary to solve the problem for
a range of r. values, and then conduct a tradeoff analysis.

In short, the issue here is to determine what decision ¢ € Q gives us the best
(a(q,7e), ) pair. The point is that we would like both &(g,r.) and r. to be as large
as possible, but this is usually impossible because @(q,r.) is non-increasing with 7.

5 Things that are definitely wrong in Info-Gap

There are many things that are not right in Info-Gap, but some cry out to be rectified
more than others. The list below consists of items that I classify as definitely wrong,
to be distinguished from those that are just not right, or semi-definitely wrong.

Needless to say, this classification is inherently subjective, so feel free to declassify
the items on this list and/or use your own classification.

Things that ave definitely torong in Info-Gap

W-1 Info-Gap has serious misconceptions about the state of the
art in decision theory and optimization theory.

W-2 For all intents and purposes Info-Gap is a re-invention of
a simple instance of Wald’s Maximin Principle.

W-3 The Info-Gap uncertainty model is fundamentally flawed.
Info-Gap suffers from a severe case of split personality in
relation to its treatment of severe uncertainty.

W-4 Info-Gap does not deal with severe uncertainty: it simply
and unceremoniously ignores it.

W-5 There is no reason to believe that the solutions generated
by Info-Gap are likely to be robust.

W-6 Info-Gap’s “satisficing is better than optimizing” crusade
is outdated and pointless.

W-7 The Info-Gap subject index and bibliography are severely
deficient.

My advice to Info-Gap aficionados is that the items on this list are important
and should be heeded. I discuss them in detail in my book on decision-making under
strict uncertainty (Sniedovich [2007])
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In any case, as we shall soon see, it is quite easy to show, in fact formally “prove”,
the following two things:

- The generic Info-Gap model is an instance of the famous Wald’s Maximin Prin-
ciple.

- The Info-Gap uncertainty model is fundamentally flawed.

Let us then examine the Principle and then turn our attention to the generic
Info-Gap model and the way it is presented in the official Info-Gap literature.

6 Wald’s Maximin Principle

In my humble opinion, every proponent of Info-Gap should have a Wald’s Mazimin
Principle sticker on their car. If you do not have a car put it on your computer. If
you do not have a computer put it on your fridge. If you do not have a fridge put it
on the cover of your Info-Gap book.

Feel free to copy the sticker and distribute it widely.

J Love

* You Mama
v* :=max min f(d,s)
deD seS(d)

MWald's Marimin Principle

To refresh your memory, Wald’s Mazimin Principle [1945, 1950] is one of the most
important principles in decision theory. It was inspired by von Neumann’s (1928)
formulation of Mazimin problems in connection with his work on Game Theory.

As we already noted, this is how it is described by the philosopher John Rawls,
in his famous A Theory of Justice:

The maximin rule tells us to rank alternatives by their worst possible
outcomes: we are to adopt the alternative the worst outcome of which is
superior to the worst outcome of the others.

Rawls [1971, p. 152]

And here is how the general Maximin Principle is described in the Free On-Line
Dictionary of Philosophy (www.swif.it/foldop):
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maximin principle

<logic, mathematics, game-theory> supposition that the preferable alter-
native is one whose worst outcome is least harmful, originally in mathe-
matical and game-theoretical contexts. Thus, when success in any venture
is uncertain, it is better to choose courses of action that risk the least,
even if they don’t offer a chance at the most. Rawls argued that this
maximization of the minimum gain to be achieved is a rational guide for
social decision-making. Recommended Reading: V. F. Dem’Yanov and
V. N. Malozemov, Introduction to Minimax (Dover, 1990); Stephen Si-
mons, Minimax and Monotonicity (Springer Verlag, 1999); Ronald Chris-
tensen, General Description of Entropy Minimax (Entropy, 1981); and
John Rawls, A Theory of Justice (Belknap, 1999).

http://www.swif.uniba.it/lei/foldop/foldoc.cgi?maximin+principle

And here is how the related Minimaz Principle is described in the online encyclo-
pedia WIKIPEDIA (www.wikipedia.com):

Minimax in the face of uncertainty

Minimax theory has been extended to decisions where there is no other
player, but where the consequences of decisions depend on unknown facts.
For example, deciding to prospect for minerals entails a cost which will be
wasted if the minerals are not present, but will bring major rewards if they
are. One approach is to treat this as a game against nature, and using a
similar mindset as Murphy’s law, take an approach which minimizes the
maximum expected loss, using the same techniques as in the two-person
ZEero-sum games.

en.wikipedia.org/wiki/Minimax#Minimax.in_the_face.of uncertainty

In short, the Maximin Principle is a major celebrity in decision theory. It is
therefore not surprising that it appears in standard introductory OR/MS textbooks.

It certainly appears in my lecture notes for the subject 620-262: decision-making,
is used in my lecture notes for the subject 620-261: Introduction to Operations Re-
search, and is deployed here and there in my journal articles ...to get rid of uncer-
tainty.

I therefore cannot imagine how anyone doing research in the area of decision-
making under uncertainty can survive without having some knowledge of this famous
mega star of decision theory.

Back to base.

The conceptual framework for the interpretation of Wald’s Mazimin Principle is
as follows.

- You are required to select a decision d from a set of feasible decisions ID.

- The reward generated by a decision, f(d, s), depends also on the state of nature,
s, whose true value is unknown, except that it lies in the state space S, or more
specifically in a subset S(d) of S.
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- The question is then: what is the best decision, given that the larger the reward
the better it is?

If we assume that Mother Nature selects the worst state associated with our
decision d, then the reward generated by d € D would be

v(d) == sIe%i(%)f(d’ s) (18)

We refer to v(s) as the security level of decision d. This is the worst possible
reward if we select decision d.

Wald’s Maximin Principle argues that the best decision is one whose security
level is the largest. As a result, we can find this best decision by solving the following
optimization problem:

vt = rfllgﬁw(d) (19)
= max min f (d,s) (20)

In short, by assuming that “Mother Nature is playing against us”, Wald removed
completely the uncertainty regarding the true value of s: the true value of s is (as-
sumed to be) the worst state associated with our decision. In case of a tie between
different states for this honorary title, we break it arbitrarily.

Note that the formal formulation given in (20) to Wald’s Mazximin Principle is
identical to the formulation given in (15) for the worst-case analysis. This is not an
accident: Wald’s Maximin Principle is the “most classical” framework for worst-case
analysis.

Now, it should be pointed out that this form of the classical Maximin model
can be modified to reflect specific properties of the instance under consideration. In
particular, if the objective function has a composite structure, say

fd,s)=g(d,p(d,s)), deD, s e S(d) (21)

such that g(d, p(d, s)) is non-decreasing with p(d, s), then we have

— : 22
v = max Srensl&)g(d, p(d,s)) (22)
= max g (d, Join, p(d, 8)) (23)

In this case Mother Nature’s worst-case policy would be

= i 24
o(d) := arg Jnin p(d,s) (24)

In other words, in this framework Mother Nature is deploying p as a proxy for the
official objective function f. An example of this form of the Mazimin model can be
found in Sniedovich [2003].
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7 Maximin vs Info-Gap

To examine the relationship between Wald’s Mazximin Principle and Info-Gap, it is
instructive to express the generic Info-Gap model in a more compact form so that we
can see more clearly what happens here.

So let < denote the binary operation defined by:

1 <b
a<b=4 93" 4beR (25)
0 , a>b

and consider the real valued function ¢ defined as follows:

plg, a,u) =a-(re 2 R(qu) , € Qa=0,uecUr) (26)

where - denotes scalar multiplication.
Then, by construction ¢(q, @, u) is non-decreasing with R(q,u) and therefore

c) = i y &y 27
Blre): = max = min (g, u) (27)
= i (r. < R(q, 28
(B3, Join a- (re 3 R(g,v)) (28)

= . =< in R(q, 29
Qaz0 (T = o, Rlg “)) (29)

= A = in R(q, 30

e may - (% i Rlo.o) 0

=max maxs «:r. < min R(q,u 31

qeQ { T uel(ou@) (q )} ( )

= a(r.) (32)

In other words, utilizing ¢ as the objective function of the Maximin model we can
represent the generic Info-Gap model compactly as follows:

alre) = qe%iéo uerg{l(lgu) a-(r. X R(q,u)) (33)
Suffice it to say that representations of this type are common in Operations Re-
search modeling and our undergraduate students are taught how to use them for such
purposes.
If you have nothing else to do this weekend you might consider spending a couple
of minutes examining Exhibit 1.

Wald’s Mazimin Principle ‘ Generic Info-Gap Model
= i d v(re) = i - (re 2 R(q,
v iy 7(@9) 20 = i il (e X R )

Exhibit 1
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What you see here is a pair of mathematical models. One is the famous Wald’s
Maximin Principle, the other is the generic Info-Gap model expressed compactly in
a civilized form.

So what are we to make of this?

Theorem 1 The generic Info-Gap model is an instance of Wald’s Maximin Princi-
ple.

Proof. You do not have to be an experienced mathematician to conclude that these
two models are very similar. Just in case, the correspondence is spelled out for you
in Table 2.

More formally, let R, denote the non-negative part of the real line and consider
the following instances of the basic ingredients of a Maximin model:

D=Qx R, (34)

Sq,0) =U(e, @) , g€ Q20 (35)

flg,a,u) = a-(re 2 R(g,u)) (36)
Now, consider the instance of the Maximin model specified by these objects:

£ ; d 37

v max slgfql(l})f( ,5) (37)

_ ; 38

Jax uerﬁﬁﬁa)f (¢, u) (38)

= i -(r. < R(q, 39

LB, i o (re X Rlg,u)) (39)

= e < in R(q, 40

s€0az0 (7“ = o, Rlg “)) (40)

= . < in R(q, 41

e ma - (< i Rl e

= e < in R(q, 42

e m{ oS i w} “2)

And this is the end of the story. There is no danger of mistaken identity here!
This is none other but the generic Info-Gap model. ......................... QED

In words, Info-Gap’s generic model is an instance of Wald’s Maximin Principle
characterized by a number of specific features the most important of which is the
structure of the objective function, namely

flg,o,u) = a- (rc < R(q,u)) (43)

This representation highlights the conflict between the decision maker, who at-
tempts to maximize the value of o, and Mother Nature who attempts to minimize
the value o by minimizing R(q, u) within the region of uncertainty stipulated by a.

It is a typical worst-case analysis: each decision is evaluated by the worst outcome
associated with it: Mother Nature selects a u in U(«, @) that minimizes f(q, v, u) over
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Wald’s Maximin Principle ‘ Generic Info-Gap Model

d (¢, )
]1; Q ><u]RJr
S(d) U(a, @)
f(d,s) a-(re 2 R(g,u))

Here =< denotes a binary relation yielding 1 if the relation is satisfied, 0 otherwise.
Ry denotes the non-negative part of the real line.

Table 2: Correspondence between the generic Info-Gap and Maximin models

U(a,@). In this framework the values of ¢ and « are fixed, so minimizing f(q, o, u) =
a-(r. 2 R(q,u)) over u € U(cr, ) amounts to minimizing R(q,u) over u € U(«, @).

To see more clearly what is going on here, consider a given ¢ € Q and its robust-
ness:

A L= i (re 2 ’
G(gre) - = max min_ o (re = R(q,u)) (44)
- . min (. < R(g, 4
B e (e = Bl ) )
=max G(a)- H(g,a) (46)
where
Gla)=a,a>0 (47)
H(q,a) := rbr}(in~) (re 2 R(q,u)) , Qa>0 (48)
ueld(a,u

observing that the nesting property of the regions of uncertainty implies that for a
given ¢, H(q, a) is a step function of «, as shown in Figure 5.

This implies that G(«) - H(gq,«) consists of two linear parts: on the interval
[0, &(q, )] this function is equal to G. And then on the interval (&(q,7.),00) the
function is equal to 0, as shown in Figure 6.

0 o

Figure 5: G = G(«) and H = H(q, ), g is fixed.
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0 a(gre)
Figure 6: 8(q,a) = G(«) - H(q, a), q is fixed.

In summary, the fact that the generic Info-Gap model is a special case of Wald’s
Maximin Principle is crystal clear and requires no further discussion.

What is unclear — in fact very odd — is the absence of any reference whatsoever
to this decision theoretic celebrity in the official Info-Gap literature (Ben-Haim[2001,
2006))! It is as if this literature decided to banish this lovely and friendly tool of
thought.

What a shame!

Remark:

In fact, the situation is far more serious than that. Although the official Info-
Gap literature (Ben-Haim [2001, 2006]) does not mention the Mazimin connection,
elsewhere in the literature there are claims that Info-Gap is not Maximin.

As we show in Appendix A, these ill-founded claims are based on serious miscon-
ceptions Info-Gap has about worst-case analysis and by implication Wald’s Mazimin
Principle.

8 Practice What You Preach!

Info-Gap goes out of its way — and rightly so — to stress that under SEVERE uncer-
tainty it is “wrong” to base our decision on a single point estimate of the uncertainty
parameter under consideration. The argument is simple: under severe uncertainty
estimates are of poor quality and are likely to be substantially wrong.

To illustrate the issues involved, suppose that you have to choose an option, or
alternative, from a given collection of n options (alternatives). Let v; denote the

value of option 7, i = 1,...,n, and assume that “larger is better,” so ideally — under
conditions of strict certainty — you would select the option whose v; value is largest.
But what should we do in cases where the true values of v;, i = 1,2...,n are

unknown and are subject to SEVERE uncertainty? For example, consider the following
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concrete case:

option, 7 ‘ v; ‘ U;
1 ? 17
2 ? 21
3 ? 18

assuming that the estimates 0;,7 = 1,2, 3, are subject to severe uncertainty.
Here is Info-Gap’s advice on the fundamental issue posed by such simple decision-
making problems:

The value of v; is highly uncertain and possibly varying in time, so that
historical evidence is of limited utility. The best estimate of the value of
option 7 is ©;. For instance, this might be an historical mean, perhaps
over a limited time window, and perhaps with temporal lag. Since things
change, or since the long-range mean deviates greatly from the mean on
short time intervals, the estimate is a poor indication of the true value
that will accrue from option 7 the next time a choice is made.

Ben-Haim [2006, p. 280]

In other words, Info-Gap argues the obvious: estimates obtained under severe
uncertainty should be regarded as approximations of the true values they

represent.
Now, let v; denote the best estimate we have for the true value of v; and let ¢*
denote the option whose 7; value is largest, namely let i* = argmaz{v; : i = 1,...,n}.

Here is what Info-Gap says about the choice of option i* as the best (optimal)
option:

The large value of ¥« is desirable. But 03+ is only an estimate of the
value of option ¢, and this estimate is likely to be substantially wrong.
An additional reason that large v;« is attractive is the implicit assumption
that, since v;+ is large, then the actual value of option ¢* is also large even
if v;« errs. This of course is not necessarily true.

Ben-Haim [2006, p. 281]

In other words, Info-Gap warns us against the simplistic policy of ranking alter-
natives on the basis of poor estimates resulting from severe uncertainty. The reason:
these estimates are likely to be [ SUBSTANTIALLY WRONG |.

Who can argue against this sound advice?

The question is then: what do we do given that in severe uncertainty the estimates
we use are invariably “wild guesses”?

Clearly, Info-Gap comes out against the use of “point estimates” of the rewards or
payoffs for ranking alternatives. So how exactly does Info-Gap resolve the dilemma?
How does Info-Gap evaluate how good/bad an alternative is?
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Region of Gevere Uncertainty

o U
true value

worst
value

of u
inU(a, )

Figure 7: The region of uncertainty

In line with its generic model, Info-Gap ranks alternatives according to their
robustness:

a(q, re) = max {a .7, < min R(q,u)} (49)

uel (o, )

where U(c, ) denotes the region of uncertainty around the estimate @ specified by
the parameter a.

Since by construction U(0, %) = {u} and U(«, @) is increasing in size with «, you
can regard « as the “radius” of the region of uncertainty:.

In short, the Info-Gap recipe instructs us to rank alternatives on the basis of how
they behave in the neighborhood of the estimate 4.

But doesn’t this fly in the face of Info-Gap arguing that under severe uncertainty
these estimates are and can be [SUBSTANTIALLY WRONG [?!

It should be realized that the dilemma cannot be resolved even if, in addition to
the point estimate @, the immediate neighborhood of @, namely U («a, @), is included
in the analysis. This is still a local analysis, whereas under severe uncertainty we
have to take a global view at the region of uncertainty.

In fact, if u is far from the true value of u, this would only make the situation
worse, because the distance from the worst point in U(«, @) to the true value of u is
typically greater than the distance from @ to the true value of u.

The fundamental flaw in Info-Gap’s uncertainty model is depicted in Figure 7.
Note how small the region of uncertainty U (v, @) is compared to the entire region of
uncertainty, and how far it can be from the true value of u.

I conducted numerical experiments to confirm this fact and I can report that. . . this
is indeed the case. This and other related issues are discussed in (Sniedovich [2007]).

This being the case, the conclusion is therefore that there is no reason to believe
that the solutions generated by Info-Gap are robust. At best they are robust in the
neighborhood of the estimate .
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Note that it is true that for very large values of «, the region U(a, @) can cover
a significant part of the entire region of uncertainty. However, the largest region of
uncertainty investigated by Info-Gap is the one determined by

&(r.) == max &(q, r, 50

(re) = max (g, . (50)
Thus, the fact that the region of uncertainty U («a, @) can be large for large a does

not imply that &(r.) is large, and therefore there is no a priori guarantee that the

Info-Gap model will investigate a large portion of the entire region of uncertainty:.
Hence,

Theorem 2 The Info-Gap uncertainty model is fundamentally flawed.

Proof. This follows immediately from the — justified — Info-Gap campaign
against the use of best point estimates to rank alternatives (see Ben-Haim [2006,
pp. 280-281]) . QED

My quick back of the envelope analysis indicates in no uncertain terms that in
practice this is precisely the case in situations where robust analysis is important.
After all, our main concern is the case where the value of &(r.) is small.

To sum-up, Info-Gap cannot have it both ways: if it claims to be a tool for
decision-making under severe uncertainty then it cannot use a model based on a
single point estimate. If the best point estimate is so good that the recipe indeed
yields robust solutions, then it cannot be claimed that we are in a situation under
severe uncertainty.

The focus on a point estimate and its immediate neighborhood exposes Info-Gap
to the whims of local analysis whereas the severe uncertainty feature of the problem
requires a global analysis. 1t is akin to using local search to identify a global optimum.
It does not work.

I should add that the notation in (49) conceals the fact that the robustness de-
ployed by Info-Gap is local in nature. This is an important issue and the notation
used should reflect it. In short, to be reader-friendly &(q,r.) should be re-written as
a(gq, rcla).

One of the consequences of the local nature of Info-Gap’s uncertainty model is that
the generic Info-Gap model is completely oblivious to the “size” of the total region
of uncertainty 4l in relation to the “size”, &(r.), of the optimal region of uncertainty
U(a(re), @). More precisely,

Theorem 3 Info-Gap does not deal with severe uncertainty, it simply ignores it.
More precisely, the generic Info-Gap model is invariant with the “size” of total region
of uncertainty 3: the value of &(r.) does not vary with & for all 3 such that U(a(r.) +
e, u) C Y for some e > 0.

PROOF. Let o := &(r.) and U* := U(a* +¢,4),e > 0. We have to show that o*
does not vary with 4 for all & such that 4* C 4. This follows immediately from
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Figure 8: Illustration of Theorem 3

the nesting property of the regions of uncertainty U (o, @), « > 0 and the worst-case
characteristic of robustness stipulated in the definition of &(r.). QED

This point is illustrated in Figure 8 where three regions of uncertainty are dis-
played, U C ' C Y”. The same solution, a*, is obtained for any region of uncertainty
containing the set U (a*, 1) represented by the circle.

To appreciate the implication of this fact consider the following case: you have
just solved a decision making problem under severe uncertainty using Info-Gap and
obtain an optimal decision ¢* whose robustness is o* = &(r.) = &(¢*,r.). Then you
discover the bad news that you actually severely underestimated the severity of the
uncertainty associated with your problem: the level of uncertainty is 1000-fold larger!
That is, the true total region of uncertainty Ll is 1000-fold larger.

Since this news means that the updated total region of uncertainty contains the
old one, there is no change in the Info-Gap’s analysis and the same results will be
generated: there is no change is the optimal decision and there is no change in its
robustness.

Isn’t this ridiculous?

Time Out!

You may be tempted, dear reader, to defend the Info-Gap recipe by arguing as
follows:

FAQ 2 u is the best estimate we have, so what else can we do?

I have heard this argument before and I cannot hide my smile when I hear it.

My answer is as follows:

I trust that you indeed use the best estimate you have. The trouble is not
with the choice or quality of your estimate. This is the best estimate you
have.

Ask yourself:
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Am I using the best METHODOLOGY currently available to me
for the purpose of dealing with severe uncertainty?

This is the question you should ask yourself, and the answer is a resound-
ing ...NO! You are not!

As T suggested already, you should consult the Robust Optimization liter-
ature for inspiration and guidance on how to tackle this issue.

The point is that the literature on robust optimization advises us to select scenar-
ios with care: scenarios should be selected so as to provide an adequate “coverage”
of the total region of uncertainty.

If the forecaster tries to specify too many discrete forecasts, in an attempt
to cover most possibilities, discrete minimax may yield too pessimistic
strategies or even run into numerical, or computational, problems due
to the resulting numerous scenarios. Similarly, as the upper and lower
bounds on a range of forecasts get wider, to provide coverage to a wider
set of possibilities, the minimax strategy may become pessimistic. Thus,
scenarios have to be chosen with care, among genuinely likely values. The
minimax strategy will then answer the legitimate question of what the
best strategy should be, in view of the worst case.

Rustem and Howe [2002, p. xiii]

And the message to Info-Gap users is this: in decision-making under
uncertainty you cannot obtain a robust solution by investigating a small neighborhood
around the best point estimate you have at hand.

For your convenience, I provide in Exhibit 2 a very naive first-aid package for this
purpose. Use it with imagination.

The nice thing about this simple recipe is that you can now use it as a seed for
10 or so PhD dissertations, each proposing and experimenting with slightly different
coverage and averaging schemes.

But do not forget to mention to your PhD students that they should read the Ro-
bust Optimization literature for inspiration and guidance regarding more sophisticated
schemes.

Remark:

It should be stressed that the fault in the Info-Gap uncertainty model does not lie
in the (unwitting) deployment of Wald’s Mazimin Principle. Rather the fault is in the
use of a single point estimate and its immediate neighborhood as an approximation
of the entire region of uncertainty. Indeed, the Principle is used extensively in Robust
Optimization to generate robust solutions for decision-making situations under severe
uncertainty. In other words, the culprit here is not the Principle, it is the local nature
of the worst-case analysis conducted by Info-Gap.
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Emergency First Aid Package

1. Instead of using a single estimate, cover the total region of
uncertainty with say m point estimates, call them @), j =
1,2,...,m, making sure that these estimates provide “ade-
quate” coverage of the entire region.

2. Find the optimal solution for each of these estimates. Let ¢\
denote the optimal decision associated with estimate @().

3. Evaluate the performance of each of these optimal decisions,
¢V, in relation to each of the (m—1) other estimates ¢, i # j.

4. Use some measure of “averaging” to select the “overall” best
solution.

Exhibit 2

9 Satisficing vs Optimizing

Info-Gap’s Satisficing is better than Optimizing campaign and its connection with the
promotion of Robustness as a cure for severe uncertainty is counter productive and
some 30 years late. It reminds me of the heated discussions in the early 1970’s about
the future of Operations Research, the role of optimization in decision-making, and
life in general.

The following quote comprises the complete abstract of a paper published in the
journal Operational Research Quarterly, now called Journal of the Operational Re-
search Society (JORS). The title of the paper is “Robustness and Optimality as Cri-
teria for Strategic Decisions”:

The use of “optimality” as an operational research criterion is insufficiently
discriminating. Ample evidence exists that for many problems simple op-
timization (particularly profit maximization) does not represent the aims
of management. In this paper we discuss the nature of the problem sit-
uations for which alternative decision criteria are more appropriate. In
particular the structure of strategic planning problems is analyzed. The
provisional commitment involved in a plan (in contrast to the irrevocable
commitment of a decision) leads to the development of a particular cri-
terion, robustness — a measure of the flexibility which an initial decision
of a plan maintains for achieving near - optimal states in conditions of
uncertainty. The robustness concept is developed through the case study
of a sequential factory location problem.

Rosenhead et al [1972, p. 413]

And the last paragraph in this paper reads as follows:

Robustness and stability are two criteria which are appropriate in par-
ticular circumstances. Optimality is a criterion which will continue to
have wide and useful application. Our argument is that criteria must be
matched to circumstances; that more criteria are available than are often
considered; and that new criteria can be developed when the need exists.
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If the criteria are related to the real requirements of the problem situation,
their novelty need not be a bar to their understanding and acceptance by
management.

Rosenhead et al [1972, p. 430]

Needless to say, our trusted aids Wald’s Mazimin Principle, tradeoffs, multiple
objective and so on play their usual roles in this paper. For example,

One possible criteria for uncertainty situation is the minimax criterion,
under which the decision-alternative to choose is that for which the lowest
level of benefit (taken across all possible competitive decisions or external
events) is as high as possible. Use of the minimax criterion necessarily
results in conservative decisions, based as it is on an anticipation that
the worst might well happen. In a competitive situation this may be
appropriate — if your competitor’s interests conflict with yours and he
pursues them rationally, he will choose polices which will reduce your
gains to a minimum.

Rosenhead et al [1972, p. 416]

In any case, some 35 years later it is best to summarize the “Satisficing vs Opti-
mizing” issue as follows:

Theorem 4 The “Satisficing vs Optimizing” issue is a non-issue. Any “satisficing”
problem can be transformed into an equivalent “optimizing” problem.

There are many possible proofs for this important theorem. For example, one
can run along these lines: take your “satisficing” problem and add to it an arbitrary
objective function that attains a positive constant value over the feasible region of the
“satisficing” problem. For decisions that are not feasible let the objective function
assign a negative value. Clearly, any maximal solution to this optimization problem
is a feasible solution to the given “satisficing” problem.

But in the context of our discussion it is more instructive to use a special objective
function of this type. The formalities are as follows.

Let X’ denote the “unconstrained” domain of the decision variables of the “satis-
ficing problem” and let X C X’ denote the feasible domain of the decision variables,
so that x € X' is feasible iff x € X. For example, let X’ = R™ and let X be a sub-
set of R™ determined by a system of linear constraints, like those deployed in linear
programming.

Associated with this framework define

1, eX
I(x) == v ,reX (51)
—0 , ¢ X
where, as usual in maximization problems Z(z) = —oo is interpreted as infeasibility.
So what we have is this:
Generic Satisficing Problem ‘ Generic Optimization Problem
Find an z* € X’ such that z* € X x* € Arg max Z(x)
reX’
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where the capital A in Arg indicates that we collect all the optimal solutions into a
set.

In other words, by construction, z* € X’ is a solution to the satisficing problem
iff it is a solution to the optimization problem.

In short, the “Satisficing vs Optimizing” issue is an issue without a cause. The

real issue is are we aiming to satisfy and are we aiming to optimize.
Therefore, the focus should be on what we deploy as hard and soft | CONSTRAINTS |

and what we deploy as soft and hard or goals.

Now, Info-Gap insists that it is better to optimize the robustness and satisfy
the reward requirements. Yet, at the same time Info-Gap calls for a Pareto-tradeoff
between robustness and rewards.

But the same Pareto frontier is obtained if we do it the other way around, namely
if we regard robustness as a requirement and maximize the reward given this require-
ment:

() = in 7 (r=<R(qu), a>0 52
"a) = max  min or-(r=<Rgu), o2 (52)

By definition, 7(«) is the maximum reward that can be generated by a feasible
decision under the worst case scenario associated with the region of uncertainty of
the given value of «a.

So what is the big idea of insisting that you maximize the robustness and satisfy
the reward? What is wrong with doing it the other way around?!?

In any case the entire enterprise can be stated as follows:

2*(w) :=  p-max min_ (r,a- (r < R(q,u))) (53)
q€Q,a>0,r€(r, 7] u€l (i)

where p-max denotes the Pareto Max operation and [r,7] is the interval of interest
for the reward requirement 7.

Observe that because when r is fixed the minimization with respect to u involves
only «, the min operation is a single-objective one, hence there is no need for the
Pareto generalization here.

The inclusion of 4 in 2*(@) is a reminder that this set consists of Pareto optimal
(r, ) pairs if the true value of u is equal to 4.

10 Probabilistic vs Non-probabilistic Models

This is a another non-issue that should have been kept a non-issue in our textbooks,
journal articles, presentations and public pronouncements. But we need to discuss it
here at some length because Info-Gap makes a big deal out of it.

Readers who are well versed in the “Probabilistic vs Non-probabilistic” debate
may wish to skip this section and proceed directly to the next section.

There are two aspects to the well established distinction between probabilistic and
non-probabilistic models and it is important not to confuse them:
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- The fact that the underlying model deals with uncertainty.

- The fact that no probabilistic constructs are used formally in the formulation
and quantification of the uncertainty.

The bottom line is that in the framework of a model dealing with uncertainty, a
deterministic process can be regarded, and treated formally, as a (degenerate) prob-
abilistic process. For example, in the case of Wald’s Mazimin Principle this hidden
probability process selects the worst state of nature with probability one. The same,
of course, is the case in the Info-Gap model.

So it does not matter what model you use to describe the uncertainty with regard
to the state of nature. Under the rules and regulations of Wald’s Maximin Principle
what counts is not how you describe the uncertainty itself, and how it is distributed
over the region of uncertainty. Rather, what counts is the set of “feasible” states:
Mother Nature will select the worst state with probability 1.

Whether such a model is probabilistic or non-probabilistic is a matter of interpre-
tation. It is a pity that our textbooks do not make this point crystal clear.

In any case, formally speaking this distinction should be approached with caution.
In the context of decision-making under SEVERE uncertainty it is instructive to view
Wald’s Maximin Principle as an uncertainty model whereby the worst state of nature
is observed with probability 1. This way, the distinction between this model of un-
certainty and the famous Laplace’s Principle of Insufficient Reason can be explained
along the same lines:

- Laplace’s Principle of Insufficient Reason assumes that all the states are equally
likely.

- Wald’s Maximin Principle assumes that the worst state is observed with prob-
ability 1.

In other words, both principles are probabilistic: Laplace distributes the random
variable under consideration (the state) uniformly over the region of uncertainty (state
space) whereas Wald puts it in a single spot.

This reminds me of the two methods we used in the army to clean our barracks
for the weekly inspections: one was to spread the dust thinly all over the place in the
hope that it will be thin enough to be missed. The other was to collect the dust in
one, well hidden, spot, in the hope that it will not be discovered.

We used to have long arguments about the merit of each method and we adopted
a mixed strategy. Generally speaking, both worked quite well.

Now back to Info-Gap.

In the context of Info-Gap the “probabilisitic vs non-probabilistic” issue is im-
portant because, as indicated above, Info-Gap regards this aspect of the theory as
crucial, in fact its hallmark:
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Info-gap decision theory is radically different from all current theories of

decision under uncertainty. The difference originates in the modelling of

uncertainty as an information gap rather than as a probability.
Ben-Haim [2006, p.xii|

The objective of the discussion in this section is to show that the probabilistic vs
non-probabilistic issue lacks real substance.

The legal argument is that not only does Info-Gap deploy a probabilistic approach
to handle severe uncertainty, the probabilistic construct it uses is a very simple prob-
ability distribution function, to wit:

The Info-Gap model ALWAYS generates the WORST VALUE of u (with
respect to given ¢, r.,u and «) with PROBABILITY 1.

That is, let

u*(q,7e, U, ) :=arg min  R(q,u) (54)

ueU (o, i)

so that by definition, u*(q, r., @, «) denotes the worst value of v in U (v, @) for decision
q.

Then formally, the probability distribution function used by Info-Gap to simulate
u is as follows:

1 Y u= u*(Q7 TC? ,&’?a)

Prob(ulq,re, @, o) := { , €Qa=0 (55)

0 , otherwise

This is the same probability function deployed by Wald’s Mazximin Principle and
the ground for our claim that Info-Gap is Wald’s Mazimin Principle in disguise.

Given the nesting property of the regions of uncertainty {U (o, @)}, a > 0 deployed
by Info-Gap, it is possible to formulate infinitely many other probabilistic models —
indeed fancier ones— to capture the essential spirit of the Info-Gap model.

To see how this can be done, recall that the regions {U(a, @)}, > 0 have two
basic properties:

UO,a) = {a} (56)

a>d = U u) CU, T) (57)

As we shall see soon, this meta-structure is readily amenable to a classical prob-
abilistic interpretation.
The central question is:

what is the meaning of the parameter « in this framework?
What exactly does « represent?

To fix ideas, consider the following instance of the case considered in Ben-Haim
[2006, p.71]:

U, @) = {u € R?: (ug — @)° + (up — a)? < a®} , @ >0 (58)
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so U(a, 1) is a circle of radius « centered at @ € R? and consequently the regions of
uncertainty constitute a collection of infinitely many concentric circles.

Given that u is interpreted as the estimate of the true value of u, intuitively it is
natural to think about these concentric circles as contours of a real valued function
defined on the total region of uncertainty &/. This function describes how “likely” it
is that the true value of u lies in a circle of radius a centered at .

This is in line with the way Info-Gap describes the meaning of « in relation to
similar regions of uncertainty:

The larger the value of «, the greater the range of unknown variation, so
« is called the uncertainty parameter or horizon of uncertainty. However,
quite often the value of « itself is not known so in fact (2.3) is not a single
set but a rather an unbounded family of nested sets of functions. The
degree of nesting, as well as well as the level of uncertainty, is expressed
by the uncertainty parameter a.

Ben-Haim [2006, p. 17]

So, if indeed « represents the level of uncertainty associated with the true value
of u, why don’t we call a spade a spade, and regard « as a realization of a random
variable that stipulates how far the true value of u is from the estimate @7 And while
we are at it, why don’t we assign to « a proper probability distribution function?

Of course, the reader may object to this idea, arguing that under severe uncer-
tainty it would be impossible to justify the use of any such function. But then, how
can we justify — under the same conditions of severe uncertainty — an uncertainty
model based on a good estimate, u, of the true value of v and a relatively small
neighborhood around it?

In any case, the purpose of the following exercise is not to convince the reader that
this approach makes sense, but rather that it ends up with a model that is equivalent
to the model deployed by Info-Gap. That is, the purpose of the exercise is to show
that it is very easy indeed to give the uncertainty model deployed by Info-Gap a
probabilistic interpretation par excellence.

As explained above, this is so because by always selecting the worst case, Wald’s
Mazimin Principle does its work with complete disregard for the stipulated proba-
bilistic structure. So basically we can use whatever model we fancy as long as we
keep the same state space.

To imitate the Info-Gap uncertainty model using a formal probabilistic construct,
we regard the parameter u € U as a realization of a random variable . We shall now
show how the probability density function of % can be constructed so that it imitates
the Info-Gap uncertainty model.

The basic constructs are as follows:

- A random variable & induced by a probability density function p on Ry.

- A conditional probability distribution function ¢(ulq, ., 4, a) on U (o, @). Let
u(q, e, U, &) denote the random variable induced by this distribution.
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The conceptual model for generating a realization of the unknown parameter u —
now viewed as a realization of random variable @ — is then as follows:

Step 1: Generate a realization « of & on Ry.
Step 2: Generate a realization u of u(q, r., @, «) in U(«, ).

That is, conceptually we think about # as a random variable whose realizations are
determined by a two-stage process. In the first stage a realization « of ¢ is generated
in accordance with the density p of &. Then, the conditional density ¢(:|q,7¢, @, )
generates a realization of u(q, ., 4, @) in U(«, ).

Thus, by definition,

Prob(a < o) = /a p(B)ds , a>0 (59)
0
and
o (ulg, o, 1) = / o (ulg, 7 B a)pla)dar , u € U (60)

As far as robustness is concerned, the event of interest to us is r. < R(q, @), so let
us examine the probability of this event given the above probabilistic model:

Prob(r. < R(q, 1)) = /000 Prob(r. < R(q,u)|a)p(a)da (61)
= [ probir. < Blg. g, e, 0))ple)da (62)
(e, )
- / Prob(r < R(g,i(q, 7o, @) )p(e) da

+ / T Problr. < Rlg, i, e, 0)))p(a)da (63)

(gre,@)
Next, to imitate Info-Gap’s worst-case philosophy, consider the special case where
1, u=u(q,re0 )

. uwel(a,i 64
0, utuwlgrosa) @ EH®D (64

90(u|Qa Te, U, a) = {

where u*(q, re, @, ) is defined by (54). In this case we have

1 < A (3] U

Probir, < Rlgifg,re,i,0) = 1+ @ = 40T (65)
0 , otherwise
Thus, it follows from (63) that under Info-Gap’s worst-case scenario
OA‘(q7TC7~)
Prob(r. < R(q, 1)) = / pla)da (66)
0

= Prob(é < a(g, re, @) (67)

And because Info-Gap’s regions of uncertainty are concentric, this entails that
Prob(r. < R(q,u)) = max{a > 0: Prob(r. < R(q,u*(¢,7¢, 4, ))) = 1} (68)

In short,
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Theorem 5

a(q,re) = max - Prob(r. < R(q,u*(q,7¢, U, x))) (69)
. _ _ < . .
a(re) nax a Prob(r. < R(q,u*(q,7e, @, ))) (70)

In other words, we can express the Info-Gap robustness indices in simple proba-
bilistic terms and the generic Info-Gap model as a whole as a classical probabilistic
model.

Observe that the missing min of the standard Maximin format is hidden in the
definition of u*(q, ., 4, a), namely in (54).

11 Discussion

From an Operations Research point of view Info-Gap is a simple instance of Wald’s
Mazximin Principle. Indeed, this idea can be immediately employed to “generalize”
the generic model of Info-Gap.

To appreciate the gain to Info-Gap, note that Info-Gap seems to have difficulties
dealing with general types of requirements. Its multiple reward model deals only with
< constraints. This is due to the fact that in order to apply the Mazimin formulation
it is necessary to minimize the reward function, namely to assume that “more is
better”.

But how do you deal with = constraints? And how do you deal with € constraints?
And how do you deal with more general constraints?

From an OR perspective this is not an issue because all you have to do is represent
the requirement constraints by the indicator function of these constraints, call it Z.
That is, let Z denote the function defined as follows:

T(qu) = { 1 , all the constraints are satisfied, given (q,u) 1)

—o00 , Otherwise

In this case the explicit Maximin representation of the Info-Gap model will be as
follows:

a(re) = hax uerz?(lg,ﬁ) aZ(q,u) (72)

Also, it is puzzling that Pareto Optimization is not mentioned in the first edition
of the Info-Gap book in spite of the extensive discussions therein on tradeoff analysis
a la Pareto.

There is some progress in the second edition of the book. The term “Pareto
efficient” is mentioned, albeit toward the end of the book (Ben-Haim [2006, p. 281,
312]). Still ...no references are cited and the term “Pareto” does not appear in the
subject index.

Equally important, given these extensive discussions on tradeoffs between rewards
and robustness, it is very odd that nowhere is any reference given or indication made
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that the robustness is with respect to the assumed value of the estimate u. Given the
severe uncertainty, it is only natural to explore the uncertainty region rather than
focus the analysis on a single point estimate and its immediate neighborhood.

In any case, this “local” interpretation of robustness should be reflected in the
notation used. That is, &(q,r.|4) and &(r.|t) should be used to denote robustness,
rather than &(q,r.) and &(r.), respectively. This is not a case of being pedantic
about notation. It is about using proper notation to help readers understand the
implications of the assumptions used in the formulation of the model.

Another big gap in the Info-Gap literature is the lack of indication as to how one
should go about solving the optimization problems induced by the Info-Gap model,
namely optimization problems of the form

a(re) == ax o (73)
re < R(q,u) ,Vu € U, ) (74)

Observe that in general these problems are nonlinear.
Strange though it may be, Info-Gap is clearly unaware of the area of Robust
Optimization.

This is a pity.

Not only does Robust Optimization provide useful ideas for developing solution
methods for robust optimization problems, it also provides alternative approaches for
defining “robustness”. In fact Info-Gap can profit greatly by consulting the Oper-
ations Research and Mathematical Programming literature on Robust Optimization.
Specifically, this literature can enlighten Info-Gap on how to fix its uncertainty model.

You may wonder, dear reader, how Info-Gap can be so lax about its links to rele-
vant decision theoretic oriented disciplines such as Operations Research, Mathematical
Programming and Robust Optimization. The clue can be found in the Info-Gap book:

Info-Gap models of uncertainty originated in the technological sciences,
and the early work on decision-making with info-gap uncertainty con-
centrated on engineering analysis and design. This is in rather marked
contrast to the development of most current decision theories, which have
been intensively pursued by economists and other social scientists, psy-
chologists, management and operations researchers and related scholars in
the supporting disciplines of mathematics and statistics. Info-Gap deci-
sion theory has been heavily influenced by the classical theories, primarily
in the identification of the roles and goals of a decision theory, and much
less in the formulation of questions or methods of solutions. Many con-
cepts from classical theories such as risk aversion, value of information,
and learning, have identifiable but different manifestations in info-gap.
Ben-Haim [2006, p. 3]

This is a pity! And it shows!
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As we have seen, such declarations are based on serious misconceptions not only
about the state of the art in Operations Research, Mathematical Programming and
Robust Optimization, but also about classical decision theory proper.

Indeed, the idea that classical decision theory does not offer a non-probabilistic
approach to decision-making under uncertainty is preposterous. Furthermore, the
failure to refer to this approach, let alone discuss it, in a book on decision-making
under severe uncertainty is inexplicable.

I find it instructive at this stage to illustrate how this is done in our textbooks.
Take for example the very soft textbook entitled Spreadsheet Modeling Decision Anal-
ysis by Ragsdale [2004].

Chapter 15 in this book, entitled Decision Analysis, deals, among other related
things, with probabilistic methods and nonprobabilistic methods. Here is the first
paragraph of the sixth section in this chapter:

15.6 NONPROBABILISTIC METHODS

The decision rules we will discuss can be divided into two categories:
those that assume that probabilities of occurrences can assigned to the
states of nature in a decision problem (probabililistic methods), and
those that do not (nonprobabililistic methods). We will discuss the
nonprobabilistic methods first.

Ragsdale [2004, p. 760]

Wald’s Maximin Principle, and its many variations, appear in this section.
So what exactly are we to make of Info-Gap’s claim:

Info-gap decision theory is radically different from all current theories of

decision under uncertainty. The difference originates in the modelling of

uncertainty as an information gap rather than as a probability.
Ben-Haim [2006, p.xii]

How exactly does info-Gap handle the information-gap if not by assuming the
worst case scenario?
Here is how Ragsdale describes the Maximin Rule:

15.6.2 The Maximin Decision Rule

A more conservative approach to decision-making is given by the max-
imin decision rule, which pessimistically assumes that nature will al-
ways be “against us” regardless of the decision we make. The decision rule

can be used to hedge against the worst possible outcome of a decision.
Ragsdale [2004, p. 761]

I tried on several occasions to find standard decision theoretic terms such as “worst
case”, “Mother nature”, “state of nature”, “against us” and so on, in the Info-Gap
books, but I failed. Perhaps it is yet another sign that I am getting old, but I doubt
it.

I must confess that while reading the Info-Gap books I do not feel that I am in a
decision theoretic environment.
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12 Bibliographical Notes

I provide references to a number of general introductory Operation Research text-
books (Hillier and Lieberman [2005], Markland and Sweigart [1987], Ragsdale [2004],
Winston [1994]). This should give you a general overview of OR and how Wald’s
Mazximin Principle fits in this framework.

For the same reason I provide references to more specialized decision theory books
(French [1998], Griinig and Kiihn | 2005]) and a reference to a multicriteria optimiza-
tion book (Steuer [1985]).

The game theory book (von Neumann and Morgenstern [1944]) is on my list
because although it is cited in the Info-Gap literature ...this literature makes no
mention of the Mazimin paradigm developed by von Neumann in the late 1920s.

I encourage Info-Gap devotees to take a quick look at the references I provide for
robust optimization (Ben-Tal et al [2006], Rustem and Howe (2002), Kouvelis and
Yu [1997], Rosenhead et al [1972], Vladimirou ad Zenios [1997]) for reassurance that
optimization theory is fully aware of the robustness issue, a fact that the Info-Gap
should acknowledge and appreciate.

My paper on the famous Egg Dropping puzzle (Sniedovich [2003]) is on the list
because ... by coincidence it refers explicitly to the robustness issue. It shows that in
the case of this puzzle there is a robust policy: the same policy is optimal both with
respect to the Maximin criterion and with respect to Laplace’s Insufficient Reason
criterion.

The reference to Gilboa and Schmeidler [1989] is important and requires a special
explanation.

This paper is cited in the 2nd edition of the Info-Gap book, but not in the first
edition. Its title is Maxmin expected utility with non-unique prior. As indicated by
its title, it refers explicitly to Wald’s maximin criterion.

And here is how this reference is mentioned in the Info-Gap book:

Info-gap models are not the only possible way to quantify Knightian un-
certainty. On the contrary, Gilboa and Schmeidler [78], Epstein and Wang
[72], Epstein and Miao [71] and others, achieve uninsurable uncertainty
of a clearly Knaightian type by replacing a single prior probability distri-
bution with a set of distributions. These approaches are Knightian “true
uncertainty” since the absence of a probability measure on the set of prob-
ability distributions make the uncertainty uninsurable. Nonetheless, an
info-gap model of uncertainty is a more extreme departure of the prob-
abilistic tradition. In our formulation, preferences are generated by the
robustness function without any distribution functions at all.

Ben-Haim [2006, p. 294]

Given that Wald’s Maximin Principle equally does not deploy “...any distribution
functions at all ...” and that Gilboa and Schmeidler’s formulation refers explicitly
to Wald’s Maximin criterion, it is puzzling that the Info-Gap book does not refer to
Wald’s Maximin criterion.
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There is hope, though, that the strong connection between Info-Gap and Wald’s
Maximin Principle will be acknowledged and will receive proper treatment in the
next edition of the book.

13 Epilogue

My more than 30 years of experience using decision theory, teaching various aspects
of decision theory and developing a large body of related courseware, have taught me
an important lesson.

One must appreciate to the full the difficulties associated with decision-making
under uncertainty in general and severe uncertainty in particular.

In my humble opinion, given the state of the art in decision theory, operations
research and robust optimization, proponents of Info-Gap should reassess this theory
and its role and place in decision theory.

Indeed, it is a pity that Info-Gap does not recognize the strong links between
its goal of obtaining robust solutions under severe uncertainty and what has been
happening in Operations Research in this area over the past 50 years.

Info-Gap should acknowledge, appreciate and exploit the fact that its generic
model is an instance of Wald’s Mazimin Principle, that its tradeoff analysis is stan-
dard Pareto analysis and that there is a well developed area called Robust Optimiza-
tion.

It should also practice what it preaches and refrain from basing its severe uncer-
tainty analysis solely on a single point estimate and its neighborhood. And while at it,
it should bring to a happy end the unproductive Satisficing is Better than Optimizing
campaign.

It is important to take note, dear reader, of the severity of my critique. I question
not only Info-Gap’s contribution to the state of the art in decision theory, but also
its very familiarity with this state of the art.

But this is unavoidable. The two go hand in hand.

How are we to judge a theory for decision-making under uncertainty that does not
recognize Wald’s Mazximin Principle and is completely unaware of the extensive re-
search work in such areas as Operations Research and Robust Optimization in relation
to decision-making under severe uncertainty?

But there is a lesson here for Operations Research enthusiasts as well, in fact the
OR community as a whole.

We must be doing something very wrong in the way we market our products
and technologies. For how is it that these are not recognized and appreciated by
professionals from other disciplines for what they are and what they can do?

Why is it that other disciplines have to re-invent standard OR methods and tech-
niques, rather than use our existing products — products that are discussed in our
textbooks?
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And how is it that OR analysts do not recognize these methods and techniques
when they come disguised by jargon !7!?

And to my dear colleagues:

I am fully aware of the fact that you’ll soon tell me that the flaws in Info-Gap
are so OBVIOUS that you do not understand what the fuss is all about. After all, this
longish essay is just about two ways of expressing the same thing:

maxqa:r, < min R(q,u max min «-(r. = R(q,u
{ores i, miow} i, - (0 % Rlg. )

There is no fuss here at all. I regard this analysis as part of my ongoing effort
to promote the idea that mathematical modeling is immensely important in decision-
making. What we have here is a vivid illustration of the mathematical modeling
subtleties associated with Wald’s Maximin Principle and worst-case analysis.

I shall therefore be extremely pleased to hear that you find the conclusions obvious.
The more obvious they are to you the more pleased I'll be.

So make my day and send me a note!

14 Conclusions

Given the claims made in the official Info-Gap literature about its role and place
in decision theory, our investigation was guided by the following three fundamental
questions:

Q1 Is the generic Info-Gap model new?
Q2 Is it radically different from the classical models of decision theory?
Q3 How well does it represent severe uncertainty?

Having carefully examined the generic info-Gap model from an Operations Re-
search point of view, we are now in a position to provide answers to these questions:

Al Not only is it the case that the generic Info-Gap model is not new, it is a simple
instance of none other than the most famous model in decision-making under
severe uncertainty, namely Wald’s Mazimin model.

A2 For the very same reason, the generic Info-Gap model is not radically different
from classical models for decision-making under severe uncertainty.

A3 The generic Info-Gap model does not deal with the severe uncertainty aspect
of the decision problem. It simply and unceremoniously ignores it.

So it turns out that when you clear all the fog surrounding the essence of what
Info-Gap actually does, you discover that conceptually its generic decision model
consists of two very simple ingredients:
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1. Replacing severe uncertainty by a poor estimate of the parameter under con-
sideration that can be substantially wrong.

2. Conducting a simple vanilla Maximin analysis in the neighborhood of this esti-
mate.

The first step amounts to practicing voodoo decision-making: instead of dealing
with severe uncertainty by properly exploring the region of uncertainty under consid-
eration, you simply ...... ignore the severe uncertainty altogether and base the entire
analysis on a single point estimate of the parameter in question and its immediate
neighborhood. The picture is this:

Region of Gevere Uncertainty

o U
true value
U(a, 1)
worst
value
of u
inU(a, )

Figure 9: Voodoo Decision-Making

Indeed, Info-Gap’s generic model addresses the following question: how far can
we move from a given point u € U without violating the performance requirement
re < R(q,u),Yu € U(a,w)?

You can ask this question in the context of a deterministic problem where there
is no uncertainty at all in the parameter under consideration.

In short, Info-Gap does not deal with severe uncertainty — it simply ignores it.

The implication is then this: all that Info-Gap’s generic model does is to conduct
a simple, vanilla, worst-case analysis a la Maxzimin in the neighborhood of a given
point estimate of the parameter under consideration.

So technically Info-Gap’s generic model is just an instance of Wald’s [1945] Maz-
1min model.

However, the idea to use such a model under severe uncertainty, where the param-
eter is poor and is likely to be substantially wrong amounts to voodoo decision-making.

So what are we to make of the claim that Info-Gap is a new theory for decision-
making under severe uncertainty that is radically different from all existing theories?

I don’t know about you, dear reader. I think that this claim is preposterous!

More than anything else, it exhibits severe Info-Gap about the state of the art in
decision-making under severe uncertainty.
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Note
A copy of a short book on
Worst-Case Analysis for decision-making Under Strict Uncertainty
based on this essay should be available on my website at
www.ms.unimelb.edu.au/~moshe/maximin/
before the end of 2007.

If it is not there by then, send me a note and I shall make sure that it
is there!

I shall be delighted to give a presentation on this topic at your place.
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Appendix

A The 2ART and SCIENCE of worst-case analysis

I have already shown how easy it is to formulate the entire Info-Gap model as an
instance of Wald’s Maximin Principle and, by implication, how natural it is to view
Info-Gap as a simple worst-case analysis.

Recall that in this framework the decision maker is playing against an ANTAGO-
NISTIC Mother Nature. That is, in line with the worst-case dogma, Mother Nature
always selects the worst state (for the decision maker) associated with the decision
made by the decision maker.

In this appendix I need to enlarge on my discussion of this issue. The reason for
this is that although the Info-Gap books (Ben-Haim [ 2001, 2006]) are completely
oblivious to the obvious Mazimin/worst-case analysis connection, there are claims in
a recent article that in the Info-Gap framework there is no worst case and therefore
Info-Gap is not Maximin.

So apparently what I consider “simple” and “easy” is not so simple and not so
easy after all.

My plan for this appendix is first to examine quickly the reasoning behind these
claims and then to explain what is amiss with them. Since these claims are invalid
on many fronts, my discussion is a bit lengthy. So bear with me.

A.1 The claims

As T have already indicated on several occasions, one of the oddest things about the
official Info-Gap literature (Ben-Haim [ 2001, 2006]), is that it takes no cognizance of
the existence of Maximin and worst-case analysis and the important role they play
in decision-making under severe uncertainty and robust optimization.

It should be noted, though, that this connection is touched on in other Info-Gap
publications. For example, consider this:

The info-gap model is unbounded in the sense that there is no largest set
and there is no worst case.
Carmel and Ben-Haim [2005, p. 635]

And this:

It is important to emphasize that the robustness (R, ¢) is not a minimax
algorithm. In minimax robustness analysis, one minimizes the maximum
adversity. This is not what info-gap robustness does. There is no maximal
adversity in an info-gap model of uncertainty: the worst case at any hori-
zon of uncertainty h is less damaging than some realization at a greater
horizon of uncertainty. Since the horizon of uncertainty is unbounded,
there is no worst case and the info-gap analysis cannot and does not pur-

port to ameliorate a worst case.
Ben-Haim [2005, p. 392]
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And this:

Info-Gap robustness analysis is a a stress-testing tool with similarities
to the maximum-loss and worst-case methods. However, it is important
to point out two fundamental differences between info-gap analysis and
these methods, differences that make the info-gap approach a useful sup-
plement. First the robustness is not a worst-case or minimax assessment.
There is no worst case in an info-gap model of uncertainty: as the hori-
zon of uncertainty h grows, the uncertainty sets F(h, f) become more
inclusive. The robustness function E(R*, c) does not identify a worst case.
What is evaluated is the greatest horizon of uncertainty up to which the
performance is acceptable. This in no way asserts that the real varia-
tion is acceptable. The utility of the robustness function is in comparing
alternative investment in order to determine which is more immune and
which is less, and in assessing capital requirements in terms of Knightian
uncertainty in the estimated PDF.

The second basic difference between info-gap and extreme-value meth-
ods is that info-gap analysis deals non-probabilistically with severe un-
certainty. An info-gap model quantifies the Knightian uncertainty — the
lack of information and understanding of unmeasured future changes or
surprises — that accompanies an estimate of the PDF. The info-gap ro-
bustness assess the impact of Knightian uncertainty without introducing
measure functions or probabilistic assumptions and requirements such as
normality or large samples.

Ben-Haim [2005, p. 401]

Remark: in the context of the model used in this paper, read h as «; c as q; Ry as r;
h(Rx,c) as &(q,r.); and F(h, f) as U(a, @).

In view of the discussion, these claims are clearly invalid: I have formally proved
that Info-Gap is a simple instance of Wald’s Mazimin Principle, hence that it is a
classical worst-case analysis.

So the question is not whether the above claims are valid or not. The question
is rather: what exactly is wrong in these claims? Where exactly is the fault in the
specific arguments these claims are based on?

Before I address these questions in detail it is instructive to provide a more vivid
demonstration that these claims are wrong. For this purpose I now supplement the
formal proof that Info-Gap is mazimin in disguise with a semi-formal description of
Info-Gap as a typical worst-case analysis.

A.2 Info-Gap as a typical worst-case analysis

Recall that in the context of the Info-Gap model, the decisions are ranked according
to their robustness, and the recipe for this is as follows:

ueU (o, )

&(q,re) == max {a cr. < min R(q,u)} ,q€Q,a>0 (75)
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This is the robustness of decision ¢ € Q. With no loss of generality assume that
re < R(g,1),Vq € Q.

To interpret this recipe as a worst-case analysis we view the optimization problem
on the right-hand side of (75) as a game between Decision Maker and Mother Nature.
In this framework, Decision Maker controls the value of & and Mother Nature controls
the value of u. Note that in this framework ¢ is given and is therefore treated as a
fixed parameter.

The payoff function for this game is stipulated by

flg,a,u) = a-(re 2 R(q,u)) , ¢ € Qa>0,uc U, (76)

Note that the payoff f(q, a,u) is equal to either o or 0 depending on whether the
performance requirement . < R(q,u) is satisfied or not, respectively.

The Decision Maker is aiming to maximize f(q, «,u) with respect to o whereas
Mother Nature is attempting to minimize f(q, a, u) with respect to u.

Since Mother Nature is minimizing f(q, «, u) with respect to u given that ¢ and
a have already been fixed by the Decision Maker, it follows that the worst outcome
given (g, «) is generated by

i(q, o) 1 = arg min_ f(q, @, u) (77)
u€U(a,i)

=arg min «a-(r. 2 R(q,u)) (78)
u€U (o, @)

= in R 79

arg min (¢, u) (79)

This is a reflection of the fact that f(q, «, u) is non-decreasing with R(q,u).
So if we wish to quickly write a script for this recipe, it will be along these lines:

The Script for the Info-Gap Game
A play in three Acts
Act 1: Decision Maker selects a ¢ € Q and a a > 0.

Act 2: In response Mother Nature selects the worst u in U(«, @), namely
u(q, o), according to (79).

Act 3: The Referee awards Decision Maker the payoff determined by
(¢, a,u), namely f(q,a,u), as specified in (76).

In short, for each decision «, there is a worst-case analysis with respect to function
f on the region of uncertainty U (o, @).

Whether Info-Gap likes it or not, this conceptual framework is worst-case analysis
par excellence.

Indeed, given the intuitive appeal and expressive power of the classical game
theoretic metaphor, it is a a great pity that the Info-Gap literature does not use this
metaphor to describe the worst-case analysis features of the generic Info-Gap model.

What a shame!
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A.3 What exactly is wrong with the claims?

Ben-Haim [2005, p. 392] claims that (a) there is no worst case in the Info-Gap analysis
and (b) that Info-Gap is not Mazimin. The task is to find where exactly does the
flaw lie. I shall therefore address some of the arguments on which these claims are
based in detail.

A.3.1 Unbounded horizon of uncertainty

For some strange reason Info-Gap mistakenly holds that, as a rule, the region of
uncertainty U (o, %) is STRICTLY expanding with «, namely that

" >ad = U(d,u) CU", 0) (80)

where C denotes strict inclusion.
This is definitely not so.

For example, consider the case where u represents the probability of a certain
event, 0 < @ < 1, and the regions of uncertainty are defined as follows (see Ben-Haim
[2006, p. 256-257]):

U,u) ={ue0l]:1-a)a<u<(l4+a)i}, a>0 (81)

Clearly, there is a finite o* such that U(a, @) = [0, 1], Voo > o*. In fact it is easy

to conclude that
1
a*:max{l, ~u} (82)
U

can be used for this purpose.
Consider for instance the concrete case where @ = 0.5. Here we have o* = 1 and
consequently

Ulo, i) = 01 cozl (83)
0.5—0.50,0.5+05a] , 0<a<l1

So clearly, the region of uncertainty U (v, @) reaches its largest size when a = a* =
1 and does not expand any further as « is increasing above a* = 1.
In short, in this example we have

= Ju(e,a)=10,1] (84)

a>0

So much then for the idea (Ben-Haim [2005, p. 392] ) that the region of uncertainty
is increasing in size with « and therefore the total region of uncertainty is unbounded.
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A.3.2 Existence of worst case

For some other strange reason Info-Gap mistakenly holds that, as a rule, if the region
of uncertainty is unbounded then there is no worst case.

Now this contention is astounding.

As we regularly teach our first year students, saddle points exist on (the un-
bounded) R%. My favorite saddle point (for teaching purposes) is the beauty associ-
ated with the following Mazimin problem:

* : 2 2
= 22y — 85
Vo= g mip (v 2oy = o) (&)

To obtain the optimal (worst) value of y for a given x, we conduct the worst-case

analysis on the feasible range of values of y, namely on ¥ = R:

y*(z) : = arg meiﬂlg {y2 + 2xy — 552} , re€R (86)
y
= —x (87)

So the recipe for the optimal value of x is as follows:

* . 2 2
" = arg max {y* + 22y — = }‘y:_m (88)
_ 2 N2
= arg rilegi[é{{( z)? + 2z(—x) — 2°} (89)
_ 9.2
= arg rgea[éc{ 2z°} (90)
=0 (91)

The optimal solution is then the saddle point (z*,3*) = (0,0). Figure 10 displays
this point in its full glory.

Note that in this framework the region of uncertainty is ¥ = R and this set is
lunbounded .

So much then for the assertion that worst-case analysis cannot be conducted on
unbounded uncertainty regions.

More generally, ...

A.3.3 Objective function

When you conduct a worst-case analysis under severe uncertainty, the existence of a
worst case is not determined only by the region of uncertainty under consideration,
but also by the objective function under consideration.

The point is that even in cases where the region of uncertainty is unbounded there
could be a worst case if the objective function is bounded on that region.

For example, suppose that the region of uncertainty is the real line R and the
objective function is sin(z). Since sin is bounded on the real line there would be a
worst case in this instance.
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Figure 10: My favorite Saddle Point

In fact, as shown above, a worst case can exist even if the objective function is not
bounded: it is sufficient that the function satisfy certain converity conditions (see for
example Rustem and Howe [2006]).

But in the framework of Info-Gap we need not worry about the general case. It
is sufficient to consider the specific objective function deployed by Info-Gap. As we
have already noted, this function is of the form

g, ,u) == a(re 2 R(g,u)) , ¢ € Qa=0,uclU(a,u) (92)

For any given pair (¢ € Q,« > 0) the worst (smallest) value this function takes
on U(a, u) is then either 0 or 1. So clearly, for any such pair, there is a worst case.

To see more clearly, consider again the formal explanation. So focus on a given
g € Q and its robustness:

g L= ' (re 2 )
G(gre) - = max min_a- (re = R(q,u)) (93)
_ . i < 4
max o- min (re 2 R(q,u)) (94)
=max G(a)- H(g,a) (95)

where
Gla)=a,a>0 (96)
H(q,a) = rLr{l(in~) (re 2 R(q,u)) , Qa>0 (97)
ueld(a,u

observing that the nesting property of the regions of uncertainty implies that for a
given ¢, H(q, ) is a step function of «, as shown in Figure 11.

This implies that G(a) - H(q,«) consists of two linear parts: on the interval
[0, &(q, )] this function is equal to G. And then on the interval (&(q,7.),00) the
function is equal to 0, as shown in Figure 12.
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0 o

Figure 11: G = G(«a) and H = H(q, «), gq is fixed.

0 a(gre)  «
Figure 12: 8(q,a) := G(«) - H(q, a), q is fixed.

It follows then that the function 5 = (g, «) defined by

B(g, ) :==G(a)- H(q,a) , ¢ € Q,a >0 (98)

initially grows as G(«) = « and then vanishes forever into 0 for o > &(q, r..), as shown
in Figure 12. Note that by construction

&lg,re) = max f(g,a) , ¢ € Q (99)

Thus, the robustness of decision ¢, namely &(q,r.), is the discontinuity point on
the graph of (g, ), where the value of (g, @) drops from « to 0.

In short, for any given value of ¢ and «, the objective function of the Info-Gap
model is bounded below by 0 and above by a. You can increase the value of o from
here to eternity, yet for each value of o a worst case exists in the region of uncertainty
associated with a.

The case where ((q,) = a,Va > 0 is of no interest because in this case the
robustness of decision ¢ is unbounded, so robustness is not an issue: the requirement
re < R(q,u) is satisfied for all u € 4L

So much then for the claim (Ben-Haim [2005, p. 392] ) that because Info-Gap’s
region of uncertainty is unbounded there is no worst case.
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Moreover, the worst-case analysis conducted by Info-Gap is not carried out over
the entire region of uncertainty i, but over the regions U («a, @), a > 0, one region at
a time — so to speak.

This brings us to the more fundamental issue.

A.3.4 Limited vs unlimited worst-case analysis

It is important to point out at the outset that there are various means to control the
scope of a worst-case analysis. This means that a decision model based on worst-case
analysis is not necessarily a doomsday scenario predicting the final destruction of the
Universe. It is not like that at all.

The availability of tools of thought aimed at limiting the scope of worst-case
analysis are of the essence if worst-case analysis is to be of any use. We should be
able, for example, to conduct a worst-case analysis of the 100-year flood in a given
region even though more extreme floods are possible, such as the 425-year flood and
the 2034-year flood, and perhaps Noah’s flood.

We have already indicated that Wald’s Maximin Principle provides a simple mech-
anism for this purpose.

Let me reiterate this point.

Consider our Mazimin model

V" = max S:rensl(:%)f(d, s) (100)

Here we can control the scope of the worst-case analysis by controlling the feasible
values that the state of nature s can take given d. This is done by defining the sets
S(d) CS,d € D to suit our needs.

That is, in this model not all the states in S are required to be associated with all
the decisions in D. This means that this model admits a limited worst-case analysis
in the sense that the choices available to Mother Nature can be limited by the decision
d € D made by the decision maker.

Clearly Info-Gap is doing exactly this: the robustness of decision ¢ € QQ involves
a LIMITED worst-case analysis, to wit:

a(q,r.) = max {a >0:7. < rg(inj R(q, u)} (101)
uet(a,u
=max min «a(r. X R(q,u)) (102)

a>0  ueld(o,a)

Observe that the values of the uncertainty parameter u are restricted to the region
U(a, @) rather than to the total region of uncertainty L.

If we regard u as the state of nature — as we should — then this formulation means
that given ¢ and o Mother Nature is not allowed to select the worst state in . It
must select the worst state in U(«, ).

Thus, as in the case of the Mazximin model where, given d € D, the state is
restricted to S(d), in the Info-Gap model, given ¢ and «, the uncertainty parameter
u is restricted to U(c, @).
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In short, as explained above, in the context of the Info-Gap model, the worst
outcome (u) pertaining to a (g, ) pair is determined as follows:

(g, ) : = arg rzrjl(in~) a(re 2 R(q,u)) (103)
ueld(a,u

- in R 104

arg min (q,u) (104)

So Info-Gap conducts a limited worst-case analysis par excellence.

Clearly then, the assertion (Ben-Haim [2005, p. 491]) that “...the robustness
function is not a worst-case or minimax assessment ...” is groundless. The robustness
function specified by (102) is patently a typical worst-case assessment. The decision
variables ¢ and « are assessed by the worst value of u in U(c, @).

Here is how this notion is described in the Info-Gap book:

The robustness &(q) of decision vector ¢ is the largest value of the hori-
zon of uncertainty « for which a specified minimal requirement is always
satisfied.

Ben-Haim [2006, p. 3§]

The key term here is “always”: this minimal requirement must be satisfied by
w in U(cr,w). This means that the acceptability of the value of o under considera-
tion is assessed by the worst performance level over the region of uncertainty under
consideration, namely U (o, @).

Indeed, we can rephrase the quote as follows:

The robustness &(q) of decision vector ¢ is the largest value of the horizon
of uncertainty « for which the worst performance in this region is not
below the specified requirement r..

The issue here is not which of these two similar descriptions is more informative.
The point is that the worst performance over the uncertainty region is used to assess
whether a given « value is acceptable.

The Mazimin representation of the Info-Gap model makes this point crystal clear.
The generic Info-Gap formulation says the same thing but is not so explicit about it.

A.4 An important modeling issue

As we have demonstrated above, Info-Gap conducts a “limited” worse-case analysis:
given ¢ and «, the worst case of u is restricted to the region of uncertainty U (a, @)
which could be much smaller than the complete region of uncertainty 4.

So how would you respond to the following plea for help?

In any case, the good news is that such a recipe is available. In fact, the recipe is
straight forward.
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Dear Sir/Madam:

It was just announced here that starting 7:00AM tomorrow, any limited worst-
case analysis will be prohibited in the Institute. Only unlimited worst-case
analysis will be allowed.

Violation of this new regulation will be dealt with severely.

My problem is that I really like limited worst-case analysis and I use it ex-
tensively. I would therefore like to continue doing this kind of analysis in the
future.

Do you know of any recipe that will allow me to disguise my limited worst-case
analysis as an unlimited worst-case analysis?

I am looking forward to your advice on this matter.
Best wishes
Borat

A call for help!

All you have to do, Borat, is write the Info-Gap robustness as follows:
&(q,r.) = max {a >0:7. < miﬂ R(q, o, u)} (105)
ue
where

. { R(q,u) , uel(a,n) (106)

Rlg o u) = —00 u ¢ U, u)

Note that since here Mother Nature is allowed to select the worst state in 4, rather
than in U(«, @), this is indeed an unlimited worst-case analysis.

If you have nothing else to do this evening, you might consider spending a minute
or two showing formally that

max {a : 7. < min }é(q,a,u)} = max {a :T. < min R(q,a,u)} (107)

ueil uweld (a,a)

for all ¢ € Q and a > 0, thus confirming that Info-Gap is indeed also a typical
unlimited worst-case analysis.

Woooohhhhaaal!!!!

A note to my students:

This is an excellent item for the final exam. Make sure, therefore, that you complete
this exercise on your own.
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A.5 Implications

The fact that Info-Gap is a limited worst-case analysis is of no major significance,
and should be regarded as a modeling technicality. Note that as we have shown, we
can also express Info-Gap as an unlimited worst-case analysis by slightly modifying
the model.

However, the nature of the limitation on the scope of the worst-case analysis
incorporated in the Info-Gap model is significant, in fact crucial, for the interpretation
of the results. Given that the worst-case analysis is limited to the regions U (v, 1), 0 <
a < a(r.), the ROBUSTNESS of the solution is LOCAL rather than GLOBAL in nature.
Typically, only regions in the immediate neighborhood of the estimate u are explored.

This is the reason that in Section 8 I drew attention to the fact that there is no
ground to believe that under severe uncertainty the solutions generated by Info-Gap
are likely to be robust: under severe uncertainty this estimate is expected to be a
poor indication of the true value of u and is likely to be substantially wrong.

As a result, the very limited scope of its worst-case analysis prevents Info-Gap
from probing the complete region of uncertainty 4. Therefore, there is no reason to
believe ...

I strongly recommend that users of this theory should warn the public about this
aspect of Info-Gap by incorporating the estimate « in the notation for the robustness.
Thus,

&(q,7.) = max {a >0:r. < Ig{l(in~) R(q, u)} (108)
uet(a,u
should be re-written as
&(q,r|t) := max {a >0:r.< Ibltl(inj R(q,u)} (109)
uce(a,u
and
a(re) == max a(q,r.) (110)
=0
should be written as
a(re|a) := max &(q, r.|u) (111)
=0

And more importantly, the following sticker should be attached to all reports
generated by Info-Gap models:

Public Warning

Be careful when you interpret the results generated by Info-Gap models.
The worst-case analysis incorporated in these models is very limited in
scope so that the robustness defined by these models is inherently very
local in nature. Therefore, there is no reason to believe that, under severe
uncertainty, the solutions generated by such models are likely to be robust.

And the usual picture I show in support of this argument should be posted next
to this warning sign.

61



Region of Gevere Uncertainty

o U
true value

Figure 13: See Public Warning

A.6 Summary

There are several ways to interpret the generic Info-Gap recipe for determining the
robustness of a decision ¢:

&(q,r.) :== max {oz >0:r. < IZI}(HK) R(q, u)} (112)
uet(a,u
I have shown here that a natural interpretation of this recipe views the Info-
Gap model as a vanilla application of the classical Maximin Principle. That is, it
is natural to view the generic Info-Gap problem as Mazimin game a decision maker
plays against Nature, with the implied worst-case analysis connection:

g ¢) ‘= ma min -(r. = R(q, 113
a(g.re) = max min o (ro 2 K¢, u)) (113)

The advantage of such an interpretation is that it brings with it an enormous body
of knowledge and literature that has been growing steadily over the past 60 years or
SO.

I have also shown that the arguments put forward by Info-Gap to dissociate itself
from worst-case analysis vividly illustrate the degree to which Info-Gap is unaware
of ...what it actually does.

So here is a provocative question to all Info-Gap aficionados out there who despite
my effort here still believe that Info-Gap is not all a simple worse-case analysis:

What is the worst value of w in U(a, @) for a decision maker whose
objective in life is to maximize the payoff f(q, «,u) stipulated by

a , 1. < R(q,u)

_ a>0 (114)
—00 , otherwise

flq, o, u) rz{

assuming that the values of ¢ and a have already been determined?

If your answer is something along the following lines, you should accept the fact
that Info-Gap is a simple instance of Maximin:
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Clearly, for any given ¢ and « the value of f(q,,u) is non-decreasing
with R(q,u). Thus, the worst value of u in U(«a, @) for the decision
maker is one that makes R(q,u) as small as possible. Therefore, to
hurt the decision maker as much as possible I should select a u in
U (e, @) that minimizes R(q,u) over u in U(a, ).

If you accept this interpretation you are in good company!

Furthermore, in this case you will be able to utilize the well established Robust
Optimization literature where similar recipes are designated at the outset as Maz-
imin-based ideas (see for example Restum and Howe [2002] and Kouvelis and Yu
[1997]). This literature will also furnish you with guidance and inspiration for fixing
the fundamental flaw in the Info-Gap model resulting from the very local nature of

its worst-case analysis.
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