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The objective of this short note is to provide a general, non-technical summary of what is amiss
with Info-Gap decision theory. An extended discussion outlining in great detail the true nature of
Info-Gap decision theory and its profound failings can be found at:

info-gap.moshe-online.com
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This discussion is intended to serve as a “second opinion” for analysts and decision-makers who
have fallen for Info-Gap decision theory, lured — perhaps unwittingly — by its rhetoric, which gives
the false impression that this theory provides a sound scientific paradigm for robust decision-making
in the face of severe uncertainty.

The main objective of this short note is then to set the record straight on a number of myths that
are propagated in the Info-Gap literature.

1. Info-Gap decision theory propounds grave misconceptions about its role and place in decision
theory. In particular, the contention that it is a distinct, novel, revolutionary and radically
different methodology for the treatment of severe uncertainty is grossly in error.

The fact of the matter is that Info-Gap’s robustness model is a simple instance of none other
than the most celebrated model in Classical Decision Theory for the treatment of severe
uncertainty, namely: Wald’s Maximin/Minimax model (circa 1940). Likewise, Info-Gap’s
opportuneness model is a simple instance of the well known (super-optimistic) Minimin model
(circa 1950).

The repeated futile attempts in the Info-Gap literature to deal with this embarrassing fact only
expose Info-Gap decision theory to harsher criticism. Indeed, these attempts exhibit even deeper
conceptual and technical errors.

2. Ironically, the trait that does set Info-Gap apart from other methods in this field is the funda-
mentally flawed manner in which its Maximin and Minimin models are deployed in the treatment
of severe uncertainty. Indeed, this trait makes a mockery of Info-gap’s declared objective: the
treatment of severe uncertainty.

Info-Gap’s basic contention is that its robustness model is designed specifically to seek robust
decisions for problems that are subject to the severest uncertainty imaginable: “true Knightian
Uncertainty”. But the fact of the matter is that this model is in principle unable to deliver
on this declared aim because of its peculiar mode of operation, namely the local nature of the
analysis that it prescribes.

That is, Info-Gap’s Maximin/Minimin models use a single point estimate of the parameter of
interest as the focal point of the robustness and opportuneness analyses. At the same time, the
fundamental working assumption of Info-Gap decision theory is that under conditions of severe
uncertainty the estimate is a wild guess of the true value, and is likely to be substantially
wrong. So what do these analyses amount to? The picture is this:

No Man’s Land No Man’s Land

where

· The tiny white dot represents the wild guess of the true value of the parameter of interest.

· The black area around the wild guess represents the region of uncertainty affecting Info-
Gap’s robustness/opportuneness analysis.

· The light gray area represents Info-Gap’s No Man’s Land: that part of the uncertainty
space that has no impact whatsoever on Info-Gap’s robustness/opportuneness analysis.

So, how worthwhile/meaningfull/valid can results yielded by an analysis in the immediate neigh-
borhood of the estimate be?

Indeed, not only is there no basis whatsoever to expect these results to be reliable, the analysis
gives the decision-maker a thoroughly distorted picture of how the severity of the uncertainty
is tackled by Info-Gap decision theory.
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In a nutshell, the vaunted Info-Gap approach to uncertainty prescribes an analysis that effectively
violates the universally accepted Garbage in - Garbage out Maxim. For, what Info-Gap’s basic
claim comes down to is that it is capable of accomplishing the following feat:

wild
guess −→ Info-Gap Decision Theory −→ robust

decision

This renders Info-gap decision theory a voodoo decision theory par excellence.

3. This glaring flaw is particularly grave in cases where the region of uncertainty under consideration
is unbounded. Note then that an unbounded uncertainty space is — according to the Info-Gap
literature — the commonly encountered case in Info-Gap applications. Furthermore, it is the
factor distinguishing Info-Gap decision theory from other non-probabilistic approaches to severe
uncertainty.

The point is then that the mere proposition to rely on a local analysis in the neighborhood of a
wild guess of the true value of the parameter of interest in such an environment — where the
uncertainty space is unbounded — is nothing short of preposterous. Indeed, the picture is
this:

−∞←− No Man’s Land No Man’s Land −→∞

This means that Info-Gap decision theory in effect argues that a local analysis in a tiny area
around a wild guess is capable of yielding decisions that are robust relative to an unbounded
region of uncertainty!

The absurd is so obvious that all that is left to say is that this is not science. This is voodoo
science par excellence!

The main point is that Info-Gap decision theory does not tackle the severity of the uncertainty
— it simply and unceremoniously ignores it.

The following picture illustrates this point. It shows the rewards generated by two decisions, q′

and q′′, as a function of some parameter u whose true value is unknown and is subject to severe
uncertainty. The estimate of the true value of u is ũ = 0, the uncertainty space is U = (−∞,∞)
and the robustness condition is R(q, u) ≥ 0. It is assumed that R(q′, u) continues its quadratic
ascent in both directions and that R(q′′, u) continues its linear descent in both directions.

According to Info-Gap decision theory, q′′ is more robust than q′ because the closest u to ũ that
violates the constraint R(q′, u) ≥ 0 is at a distance α′ = 1.08 from ũ, whereas the closest u to
ũ that violates the constraint R(q′′, u) ≥ 0 is at a distance α′′ = 1.429 from ũ. Since α′′ > α′,
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Info-Gap decision theory asserts that q′′ is more robust than q′ against severe uncertainty in the
true value of u.

Note, however, that

· R(q′, u) > R(q′′, u) almost everywhere on U , except for the two small intervals of [1.08, 2.22]
and [−2.22,−1.08].

· q′′ violates the robustness condition R(q′′, u) ≥ 0 almost everywhere on U , except for the
small interval [−1.429, 1.429].

· q′ satisfices the robustness condition R(q′, u) ≥ 0 almost everywhere on U , except for the
small intervals [1.23, 2.78] and [−2.78,−1.23].

This example also illustrates why Info-Gap’s robustness analysis cannot handle ordinary, plain,
white Swans, let alone genuine (Australian) Black Swans.

4. Info-Gap decision theory contends that methodologies seeking to optimize reward do not yield
robust decisions. The claim is that strategies based on reward optimization yield decisions with
zero robustness to uncertainty.

This alleged serious shortcoming of optimization models — according to Info-Gap decision theory
— gives Info-Gap its point and merit. For, in contrast, Info-Gap seeks decisions that are robust-
satisficing, rather than reward-optimizing.

But as anyone even mildly conversant with Optimization Theory would no doubt know, this
is a grossly erroneous thesis.

To begin with, the robustness — as prescribed by Info-Gap — of decisions that optimize reward
is typically not zero. For instance, as indicated by the figure above, the robustness of q′ is not
zero. In fact, there are many cases where reward optimizing decisions are the very decisions that
Info-Gap itself deems to be the most robust. Secondly, if one’s goal is to obtain robust decisions,
then constrained optimization provides precisely the means for this purpose: mathematical
models that enable the incorporation of robustness in the formulation of the optimization models,
let alone techniques to solve optimization problems defined by such models.

Indeed, this is precisely what is being done, for some 40 years now, in the thriving field of Robust
Optimization.

So, not only is it the case that Info-Gap decision theory gives a totally distorted view of how
robustness is handled by optimization theory, it consistently, persistently, and deliberately refrains
from referring to the very rich literature on Robust Optimization.

But why?

5. Pursuant to its erroneous position on optimization theory’s purported inability to yield robust
decisions, Info-Gap decision theory then proceeds to argue that Info-Gap’s so called “robust
satisficing” strategy is superior to what it calls “direct optimization” strategies.

More generally, the argument is that “satisficing” has an inherent advantage on “optimizing”.

This muddled thesis not only fails to show the advantage of Info-Gap’s so-called “robust-satisficing
strategy”, but it effectively exposes profound misconceptions about the whole “satisficing vs
optimizing” debate. For one thing, it betrays a lack of knowledge/understanding of the fact
that any satisficing problem can be easily formulated as an equivalent optimization
problem. The implication is then that the “satisficing vs optimizing” issue does not boil down
to whether satisficing is superior to optimizing. This is a non-issue.

Rather, the issue in this debate is: what should be optimized and what should be satisficed?

4



But, for all its rhetoric, Info-Gap decision theory does not shed any light whatsoever on this valid
question.

Conclusions

1. Contrary to persistent claims by promoters of Info-Gap decision theory, Info-Gap’s Robustness
model and Opportuneness model are neither new nor radically different from models used in
classical decision theory and robust optimization:

(a) Info-Gap’s robustness model is a simple Maximin model (circa 1940).

(b) Info-Gap’s opportuneness model is a simple Minimin model (circa 1950).

2. Info-Gap’s local implementation of these models around a wild guess is thoroughly unsuitable for
the treatment of severe uncertainty as it violates the Garbage In - Garbage Out Maxim.

3. Info-Gap’s purported ability to deal with an unbounded uncertainty space is not due to its
possessing some secret weapon. Rather, it is due to the theory’s inherently local approach to
uncertainty which effectively means that it ignores the vast uncertainty space (the severity of the
uncertainty) by focusing the analysis on a (given) point estimate of the parameter of interest and
its immediate neighborhood.

4. Info-Gap’s pronouncements regarding the “satisficing vs optimizing” debate are erroneous and
counter-productive.

5. Info-Gap’s deliberate disregard of the state of the art in Robust Optimization is inexplicable and
inexcusable.

In short, peeling off the layers of rhetoric from the Info-Gap enterprise reveals a theory that employs
a Maximin robustness model and a Minimin opportuneness model in the neighborhood of a wild guess
of the true value of the parameter of interest. This theory is therefore unsuitable for decision-making
under severe uncertainty. Indeed, it is a classic example of a voodoo decision theory, the exact antithesis
of what a theory for the treatment of severe uncertainty ought to be.

A more detailed technical critique of Info-Gap decision theory is available online at:

· http://info-gap.moshe-online.com/faqs.html
(FAQs about Info-Gap decision theory)

· http://info-gap.moshe-online.com/myths facts.html
(Myths and Facts about Info-Gap Decision theory)

· http://info-gap.moshe-online.com/reviews.html
(Reviews of Info-Gap publications)

and in the references listed therein, including the entry Info-Gap Decision Theory in WIKIPEDIA.

Postscript

Now that a fourth book on Info-Gap decision theory is about to be published (see Info-Gap Eco-
nomics), it is high time that the Father of Info-Gap decision theory face up to some facts. He owes it
to his followers.

A good starting point would be a plain answer to the following simple question:

What exactly is the difference between Info-Gap’s measure of robustness and the well-
established Stability Radius that, for more than a quarter of a century, has been used
extensively in control theory, as a measure of local robustness in the vicinity of a nominal
value of the parameter of interest?!
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In brief:

First, the math-free picture.

Consider a system that can be in either one of two states: a stable state or an unstable state,
depending on the value of some parameter p. We also say that p is stable if the state associated with
it is stable and that p is unstable if the state associated with it is unstable. Let P denote the set of all
possible values of p, and let the “stable/unstable” partition of P be:

· S = set of stable values of p. We call it the region of stability of P .

· I = set of unstable value of p. We call it the region of instability of P .

Now, assume that our objective is to determine the stability of the system with respect to small
perturbations in a given nominal value of p, call it p′. In this case, the question that we would ask
ourselves would be as follows:

How far can we move away from the nominal point p′ (under the worst-case scenario)
without leaving the region of stability S?

The “worst-case scenario” clause determines the “direction” of the perturbations in the value of p′:
we move away from p′ in the worst direction. Note that the worst direction depends on the distance
from p′. The following picture illustrates the simple concept behind this fundamental question.

S

I

Region of instability

Region of stability

p̃

Consider the largest circle centered at p′ in this picture. Since some points in the circle are unstable,
and since under the worst-case scenario the deviation proceeds from p′ to points on the boundary of
the circle, it follows that, at some point, the deviation will exit the region of stability. This means then
that the largest “safe” deviation from p′ under the worst-case scenario is equal to the radius of the
circle centered at p’ that is nearest to the boundary of the region of stability. And this is equivalent
to saying that, under the worst-case scenario, any circle that is contained in the region of stability S is
“safe”.

So generalizing this idea from ”circles” to high-dimensional “balls”, we obtain:

The radius of stability of the system represented by (P, S, I) with respect to the nominal
value p′ is the radius of the largest “ball” centered at p′ that is contained in the stability
region S.

The next picture indicates in no uncertain terms that “Info-Gap robustness” is the “stability radius”
of the feasible region of the performance requirement of Info-Gap’s robustness model:
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Satisficed

Satisficed

Unsatisficed
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ũ

Info-Gap Robustness
2006

Modeling of severe uncertainty

In short, for all the spin and rhetoric, hailing Info-Gap’s local measure of robustness as new and
radically different, the fact of the matter is that this measure is none other than the “old warhorse”
known universally as stability radius.

And as pointed out above, what is lamentable about this state-of-affairs is not only the fact that
Info-Gap scholars fail to see (or ignore) this equivalence, but also that those who should know better,
continue to promote this theory from the pages of professional journals. See my discussion on Info-Gap
Economics.

Math corner.

There are many ways to formally define the stability radius of a system. For our purposes it is
convenient to do it this way:

ρ(p′) := max{ρ ≥ 0 : p ∈ S,∀p ∈ B(ρ, p′)}

In words: the radius of stability is the largest value of ρ such that the ball B(ρ, p′) centered at p′

is contained in the region of stability S.
Now, condier the specific case where the region of stability S is defined by a performance constraint

as follows:

S := {p ∈ P : r(d, p) ≤ r∗}

where d denotes the system under consideration and r∗ is a given critical performance level.
Then in this case the stability radius of system d is as follow:

ρ(d, p′) := max{ρ ≥ 0 : r(d, p) ≤ r∗,∀p ∈ B(ρ, p′)}

In short:

Stability Radius Info-Gap Robustness
ρ(d, p′) := max{ρ ≥ 0 : r(d, p) ≤ r∗,∀p ∈ B(ρ, p′)} α(d, ũ) := max{α ≥ 0 : r(d, u) ≤ r∗,∀u ∈ U(α, ũ)}

The conclusion is therefore that Info-Gap’s measure of robustness is a re-invention of the good old
“stability radius”.

So Ben-Haim and his followers should address the following simple questions:

· In what sense is Info-Gap decision theory a new theory that is radically different from all current
theories of decisions under uncertainty?

· Given that its measure of robustness is local in nature in that it is designed to measure small
perturbations in a given nominal value of the parameter of interest, in what sense does Info-Gap
decision theory “deal” with severe uncertainty, especially unbounded regions of uncertainty?
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Remark:

In mathematics and control theory it is often more convenient to use the following alternative
definition for the stability radius:

The radius of stability of the system represented by (P, S, I) with respect to the nominal
value p′ is the radius of the smallest “ball” centered at p′ that contains an unstable point.
That is, it is the distance from p′ to the nearest unstable point in P .

In this case,

ρ(p′) := inf{ρ ≥ 0 : ∃p ∈ B(ρ, p′) such that p /∈ S)}

Note the use of “inf” rather than “min” due to the fact that a minimum value for ρ may not exist
(eg. if I is an open set).
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