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How to read this paper
- This is a self-contained discussion on the relationship between Ben-Haim’s (2001,
2006) Info-Gap decision theory and Wald’s (1945, 1950) Maximin paradigm. It was
was prompted by a recent erroneous off-the-cuff commentary on this relationship in
Los and Tungsong (2008).

- Consult the relevant section(s) in the Appendix for background information/material
on the topics discussed in the main body of the paper.

- Don’t worry about the seemingly excessive amount of time/effort that I spent
on explaining the obvious errors in Los and Tungsong (2008) regarding the Info-
Gap/Maximin connection. I have good reasons for doing this and I ... greatly enjoy
this project!

- To keep some of the sections self contained, a number of issues are discussed twice —
at different level of detail.

- You are advised that my criticism of Ben-Haim’s (2001, 2006) Info-Gap decision
theory is harsh. The degree of harshness is proportional to the seriousness of the
flaws in this theory and to the level of promotion it is attracting in Australia and
elsewhere.

- My website (www.moshe-online.com) provides additional resources relevant to this
project.

- I offer exciting, stimulating, thought provoking, entertaining presentations, seminars,
lectures, and workshops on this and related topics, including

The Rise and Rise of Voodoo Decision Theory

- As always, Info-Gap aficionados are welcome!




Abstract

On numerous occasions and in many articles I have formally shown (proved)
that Info-Gap’s robustness model (Ben-Haim 1999, 2001, 2006) is a Maximin model
(Wald 1945, 1950) par excellence and that it is fundamentally flawed in the way it
handles severe uncertainty.

Furthermore, I have shown that the Info-Gap/Maximin connection is not strictly
mathematical in nature. Indeed, the conceptual framework of Info-Gap’s robustness
model is the same as that of the instance of the Maximin model representing it,
namely it is grounded in a typical “worst-case analysis” approach to uncertainty.
The difference is in the terminology and jargon.

I was therefore surprised to learn that in a recent article Los and Tungsong
(2008) raise some doubts regarding the validity of my criticism in Sniedovich (2007)
of Info-Gap decision theory.

The good news is that Los and Tungsong’s (2008) off-the-cuff commentary on
my views on the Info-Gap/Maximin connection and the local nature of Info-Gap’s
robustness model is ... totally wrong.

The bad news is that what we have here is a completely uncalled for academic
style “comedy of errors”, one that I take seriously, hence this paper. I do hope that,
as in the case of the original (Shakespeare 1594) play, there will be a happy-end
here as well!

In any case, Los and Tungsong (2008) use the term “information gap” very,
very loosely and with no apparent reason they assume that my criticism of Ben-
Haim’s (2001, 2006) Info-Gap decision theory also applies to information gap mod-
els/theories that are not compliant with the structure of the model specified in
... Ben-Haim (2001, 2006).

In other words, I criticize a very specific information gap model, namely Ben-
Haim’s (2001, 2006) model, whereas Los and Tungsong (2008) misconstrue this
criticism by assuming that it applies to all information gap models in this Universe.

I have no idea what prompted Los and Tungsong (2008) to commit this blatant,
uncalled for error, but they did.

The objective of this paper is to fix the blunder on the part of Los and Tungsong
(2008), and to explain, once more, the Info-Gap/Maximin connection.

It turns out, however, that this “comedy of errors” does have some positive
contribution to the state of the art in decision theory: it confirms the validity of
my harsh criticism of Ben-Haim’s (2001, 2006) Info-Gap decision theory.

This entire episode, therefore, reminds me of Samson’s very famous riddle:

Out of the eater came something to eat
and out of the strong came something sweet.
Judges 14:14

Keywords: Maximin, Info-Gap decision theory, Knightian uncertainty, Robust-
ness, Local, information-gap, voodoo decision theory.
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Read Me First
Dear Reader:
It is extremely important that you note and appreciate the fact that the terms

- Info-Gap
- Info-Gap decision theory

- Info-Gap’s robustness model

that I use in this discussion — and in all my articles and presentations on this topic over
the past two years — refer explicitly and exclusively to the decision theory described
in Ben-Haim (2001, 2006).

So for example, if I say that “Info-Gap is a voodoo decision theory”, this is short for

“Ben-Haim’s (2001, 2006) Info-Gap decision theory is a voodoo decision theory”.

I mention this fact even though I am not aware of the existence of any other decision
theory called “Info-Gap” and even though I always make it crystal clear — via standard
referencing and citation conventions — that the theory that I analyze is Ben-Haim’s
(2001, 2006) Info-Gap decision theory.

In particular, in Sniedovich (2007, Introduction, p. 111) I note:

The aim of this paper is to illustrate that the mathematical modeling of
decision-making under severe uncertainty requires considerable subtlety.

For this purpose we use || Info-Gap (Ben-Haim, 2006) || as a case study.

I issue this public clarification here to guard against a possible confusion that may
occur between the above terms and terms such as

- Information gap
- Information gap uncertainty

- Information gap model

that are used by other authors, eg. Los and Tungsong (2008), in reference to theories
that are different from Ben-Haim’s (2001, 2006) Info-Gap decision theory, and the
existence/nonexistence of which I am not aware.

Enjoy your reading!
Moshe

Melbourne, Australia
July 14, 2008




1 Introduction

Over the past four years I have expressed my harsh criticism of Ben-Haim’s (2001,
2006) Info-Gap decision theory in public and in private. This criticism is well
document now: see my website info-gap.moshe-online.com and WIKIPEDIA for
details.!

The focus of my criticism is Ben-Haim’s (2001, 2006) generic robustness model,
namely?

a(g,re) = max {a >0:7. < R(q,u),Yu € U(a,u)} , g € Q (1)

In other words, my criticism is not “abstract” in nature: it refers to a very
specific, concrete mathematical model.

Now, there are many flaws in Ben-Haim’s (2001, 2006) Info-Gap decision theory
and in Sniedovich (2007) my criticism is primarily concerned with the following two
properties of the robustness model shown in (1):

- This model is || local || in nature and therefore it does not tackle the assumed

severity of the uncertainty under consideration. It simply ignores it.

- This model is a simple instance of Wald’s (1945, 1950) very famous
model, namely

= i 2
z I;lgsga)f(a, s) (2)

With regard to the Maximin connection, the flaw is not that (1) is a Maximin
model. After all, the overwhelming majority of the robustness models in decision-
making under severe uncertainty are Maximin models or related models.

But this is precisely the point: the flaw is in Ben-Haim’s (2001, 2006) assess-
ment of the role and place of Info-Gap decision theory in decision theory in general
and decision-making under severe uncertainty in particular. Specifically, the con-

tention that Ben-Haim’s (2001, 2006) robustness model (1) is ‘radically different‘

— methodologically speaking — from Wald’s Maximin model (2) is groundless.

In fact, the opposite is true: (1) is a simple instance of (2). To wit: it is easy
to show that under the conditions stipulated by Ben-Haim’s (2001, 2006) decision
theory,

max {a>0:7. < R(q,u),Yu € U(a,u)} = max gl(in~)()é “(re X R(q,u)) (3)
a2zl ueld(a,u

where the binary operation =< is defined as follows

1 <b
a=b:= 4= a,beR (4)
0 , a>b

where R denotes the real line.

In any case, through the use of standard reference and citation conventions I
always make it crystal clear that the model that I criticize is the one described by
Ben-Haim (2001, 2006). The presentation in Sniedovich (2007) is a case in point.

linfo-gap.moshe-online.com and www.wikipedia.com/wiki/info-gap.decision_theory
2See details in the appendix.



I was therefore surprised to learn very recently that for some unexplained reason
Los and Tungsong (2008) completely misconstrue the scope of the criticism in

Sniedovich (2007) by assuming that my criticism is directed at |[any || model/theory

that makes use of the buzz word “information gap”.
I have no idea what has caused this major, uncalled for mishap.

To see more clearly the “comedy of errors” aspect of the situation, note the
(communication) gap between the following two statements made by two fictitious
characters:

- Sam: “The green apple on the desk is rotten!”
- Carl: “Sam claims that any apple in Australia is rotten!”

By analogy:

- I criticize explicitly and exclusively ‘Ben—Haim’s (2001, 2006) || generic Info-

Gap robustness model (1).

- Los and Tungsong (2008) claim that I criticize |[any || model/theory that uses

the term “information gap”.

Obviously, I can dismiss Los and Tungsong’s (2008) commentary simply as an
unfortunate misinterpretation of the scope of my discussion in Sniedovich (2007)
and move to other projects listed on my ToDo sticker.

Yes I can. But I shall not.

The objective of this discussion is not to try to figure out what caused Los and
Tungsong (2008) to so grossly err in their analysis of the target of my criticism.
Rather, the main goal here is to explain the flaws in Los and Tungsong’s (2008)
off-the-cuff commentary on the Info-Gap/Maximin connection.

The paper consists of two parts:

- In the main body I examine the errors in Los and Tungsong’s (2008) commen-
tary on the Info-Gap/Maximin connection and discuss the three buzz words
associated with this saga: Knightian uncertainty, information gap, and Max-
imin

- In the appendix I explain, once more, my criticism of Ben-Haim’s (2001, 2006)
Info-Gap decision theory.

If you are not familiar with Ben-Haim’s (2001, 2006) Info-Gap decision theory,
it is the right time to consult the appendix.

2 What’s wrong in Los and Tungsong (2008)?

I regard Los and Tungsong’s (2008) commentary on the Info-Gap/Maximin con-
nection as a good example of the danger in engaging in off-the-cuff commentary,
in posting in the public domain discussions on half-baked ideas, and in the ever
increasing temptation (peer pressure?) to use trendy buzz words. In the case of
Los and Tungsong (2008) the buzz words are “information gap” and “Knightian
uncertainty”.



I imagine that the excessive use of these terms in Los and Tungsong (2008) is
a sort of compensation for the complete absence of these terms in Los (1999, 2003,
2006).

And now to the commentary itself.

1. It looks like the following quote — including its footnote — prepares the grounds
for a claim to the term “information gap”.

My[sic] Galton’s Error critique of the conventional bivariate Capi-
tal Asset Pricing Model (CAPM) based investment decision-making
showed that, when there is serious information gap,! most investment
decision-makers prefer to ignore this lack of information, providing
evidence of their ambiguity aversion (a term ascribed to Fox and
Tversky, 1995).

Tn myf[sic] Los (1999) article, I[sic] called it the “ignorance gap,”
but that is, strictly speaking, incorrect since we are dealing with a
gap in our information or knowledge, not a gap in our ignorance.
However, the measurement of our information gap is a, skeptical but
plausible, measurement of our ignorance

Los and Tungsong (2008, p. 1)

The funny thing is that tried as I did, I could not find the term “ignorance
gap” in Los’s (1999) paper. I did find there, though, the term “uncertainty
gap”. This term appears twice, in both cases on page 1811, in connection
with the value of a parameter 5 that represents modeling uncertainty (Los

(1999, p. 1809). More specifically, the first appearance is as follows:

“(iv) B3 = 0, there exists no ‘uncertainty gap‘ between the orthog-

onal frames of data reference;”

and nine lines below the second appearance reads as follows:

“(iv) 0 < 03 < 7/2, there exists an ‘uncertainty gap‘ between the

orthogonal frames of data reference;”

And that’s it folks!

In comparison, in Los and Tungsong (2008, p. 7) these very ideas are expressed
as follows:

"

“(iv) B9 = 0, there exists no ‘information gap‘

and 6 lines later

)

“(iv) 0 < 63 < /2, there exists an ‘infomation gap‘

respectively.

2. Los and Tungsong (2008) commentary on the Info-Gap/Maximin connection
refers to my 2007 paper (Sniedovich 2007). Unfortunately, Los and Tungsong
(2008) did not read my paper carefully. For had they done so they would not
have written the following regarding the buzz word information-gap :



Only recently I [sic] learned that mathematicians Ben-Haim and Snie-

dovich are currently probing similar non-probabilistic decision-making

theory issues more generally (Ben-Haim, 2006; Sniedovich, 2007).
Los and Tungsong (2008, p. 2)

In Sniedovich (2007) I am not “probing” non-probabilistic decision-making
theory issues “more generally”. What I do there is precisely what I do in this
paper: I discuss the art and science of modeling decision making under severe
uncertainty and I criticize Ben-Haim’s (2001, 2006) Info-Gap decision theory.

. Furthermore, on the same page we find the following odd claim:

Sniedovich (2007) is critical of |[any || information-gap models, which,

he asserts, generically resemble Wald’s Maximin models (Wald, 1945,
1950) and, therefore, can lead to only locally optimal and, therefore,
rationally limited decisions.

Los and Tungsong (2008, p. 2)

Reading this I just wonder if Los and Tungsong (2008) actually read my paper
(Sniedovich 2007). So here are some facts:

(a) In Sniedovich (2007) I discuss one, and only one, “info-gap model”,
namely Ben-Haim’s (2001, 2006) “info-gap model”.

(b) So the criticism in Sniedovich (2007) refers to one, and only one, info-
gap model — not to “any information-gap models”. I am not familiar
with any information-gap decision theories other than Ben-Haim’s (2001,
2006) Info-Gap decision theory.

(c) Ben-Haim’s (2001, 2006) decision theory is a VOODOO DECISION THEORY
because it conducts its robustness analysis only in the immediate neigh-
borhood of a poor estimate that is likely to be substantially wrong. This
has nothing to do with the fact that the analysis is of the Maximin type.

(d) The local nature of Ben-Haim’s (2001, 2006) Info-Gap robustness model
has nothing to do with it being a Maximin model (Wald 1945, 1950)
in disguise. There are Maximin robustness models that are not local in
nature. In fact, most of the Maximin models in the literature are not
local in nature.

. And on the very same page we also find this pearl:

However, this paper demonstrates that this is a very doubtful, if not
outrightly wrong, assertion, since information gap decision models
do not use a probabilistic measure function: they focus on the in-

completeness or lack of information.
Los and Tungsong (2008, p. 2)

Frankly, I do not know what Los and Tungsong (2008) are up to here.

(a) The criticism in Sniedovich (2007) refers explicitly and exclusively to
Ben-Haim’s (2001, 2006) theory and in this framework the criticism is
perfectly valid.

(b) Ido not know what “information gap decision models” Los and Tungsong
(2008) have in mind: although they use the term “information gap” ex-
tensively, they do not mention any specific formal information-gap model
in their paper.



(¢) In any case, in their paper Los and Tungsong (2008) do not demonstrate
that my claims are doubtful. There is no formal treatment of the Info-
Gap/Maximin issue in the paper. And in any case, such a demonstration
is impossible: there is a formal proof in Sniedovich (2007) that my claim
is valid.

5. The saga overflows to the next the page:

But Wald’s Maximin model does not take account of incomplete in-
formation about all possible “states of Nature,” and of ambiguity
aversion and its consequent thirst for scientific R&D, which can ex-
pand the known set of ”states of Nature” and reduce Sniedovich’s
“region of severe uncertainty,” while Ben-Haim’s information gap
model does.

Los and Tungsong (2008, pp. 2-3)

As shown in Sniedovich (2007) and in this paper, the MAXIMIN THEOREM is
very clear about the relationship between Ben-Haim’s (2001, 2006) Info-Gap
regions and uncertainty and the state spaces of the Maximin model represent-
ing Ben-Haim’s (2001, 2006) Info-Gap robustness model: they are identicall

So what is this big idea that Ben-Haim’s (2001, 2006) uncertainty model can

Here are the two models side by side:

Info-Gap Robustness model Wald’s Maximin Model

max{a: 7. < R(q,u),Yu € U(a,0)} = max min «a- (r. = R(q,u)) (5)
a>0 el (o,u)

In the framework of the Maximin model the state space (domain of the min op-
eration) associated with alternative « is U («, @) which is precisely Info-Gap’s
region of uncertainty (Ben-Haim 2001, 2006) associated with this alternative.

In short, to re-iterate: Ben-Haim’s (2001, 2006) Info-Gap robustness model
is a simple instance of Wald’s (1945, 1950) Maximin model. Hence, whatever
Ben-Haim’s (2001, 2006) Info-Gap robustness model can do, so can Wald’s
(1945, 1950) Maximin model — and much more.

In particular, Los and Tungsong (2008) are wrong in claiming that the state
space (= uncertainty region) of Ben-Haim’s (2001, 2006) robustness model is
not fixed in advance. It is fixed in advance.

6. In fact, it is very odd that Los and Tungsong (2008) raise this issue in the
first place. After all, they themselves note that:

An information-gap model does quantify the possible range of un-
certainty, but without any measure function.
Los and Tungsong (2008, p. 2)

But “Assuming that all states of Nature are known” is the same thing as
“quantifying the possible range of uncertainty”.

So what exactly is the issue here?

Wald’s (1945, 1950) Maximin model does not require anything that is not
required by Ben-Haim’s (2001, 2006) Info-Gap robustness model.

7. In a footnote on the same page we find the following claim:



3Sniedovich error of assertion is similar to that of the adherents to the
Intelligent Design of the Universe, who presume to know all “states
of Nature.” Human knowledge is inherently limited, expandable and

replaceable, i.e., incomplete.
Los and Tungsong (2008, p. 3)

Well, well well: how about this!!!

I can assure the reader that Sniedovich is definitely not an adherent to the
Intelligent Design of the Universe. What Sniedovich (2007) proves is that

Info-Gap Robustness model Wald’s Maximin Model

max{a :r. < R(q,u),Yu € U(o,u)} = max min «a-(r. 2 R(q,u))

a>0 uweld(a,i)
If Los and Tungsong (2008) do not like the idea that an “information gap”
model (whatever it is) should fix the uncertainty space (= state space) a priori,
then they should discuss this matter with Ben-Haim (2001, 2006) because this
is exactly what Ben-Haim’s (2001, 2006) Info-Gap robustness model does. To
wit: The regions of uncertainty U(c, @), > 0 associated with Ben-Haim’s
(2001, 2006) robustness model

a(q,re) := max{a : 1. < R(q,u),Yu € U(a, )} (6)

are clearly assumed to be known in advance.

The incomplete information is not with regard to these sets but with regard
to which element of these sets in the true value of w.

. Los and Tungsong (2008, p. 20) indicate that their “dynamic” CML-based
model, unlike Ben-Haim’s (2001, 2006) model, is not based on a point esti-
mate:

Therefore, the dynamic CML-based investment decision model of
Fig. 3 does not rely on a point estimate and, therefore, provides an
information-gap model that is not generically equivalent to Wald’s
Maximin investment decision model. This implies that it escapes the
harsh critique of Sniedovich (2007, p. 125) that “the flaw in the Info-
Gap uncertainty model” ... “lies in the use of a single point estimate
and its neighborhood as an approximation of an entire region of un-
certainty.” This expanded CML-based information-gap investment
decision model allows for the exploration of thousands of investment
opportunities, which dynamically “bubble up” in the average-return-
uncertainty space of Markowitz.

There is a serious confusion here between a number of unrelated issues:
- The “Maximin” and “Point Estimate” issues are unrelated. A maximin
model does not have to be based on a point estimate.

- The dynamic nature of the model, on its own, does not guarantee that the
model is not local in nature. Hence, the model could still end up being
local in nature, hence not suitable for conditions of severe uncertainty.

- The severe uncertainty in the “dynamic” aspects of the model increases
the severity of the overall uncertainty associated with the model.
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- Thus, without knowing the exact details of the formulation of the “bubble-
up” process and the uncertainty involved, it is premature to speculate on
the performance of the dynamic model.

9. In view of all of this, it seems that Los and Tungsong (2008) have serious
misconceptions about the relationship between their notion of how an “infor-
mation gap” model should be like, and how Ben-Haim’s (2001, 2006) concrete
“info-gap model” actually looks like.

10. And if they do not like the fact that Ben-Haim’s (2001, 2006) Info-Gap decision
theory is an adherent to the Intelligent Design of the Universe concept, that it
presumes to know all “states of Nature”, that it does not prescribe to the idea
that human knowledge is inherently limited, expandable and replaceable, i.e.,
incomplete, then ...they should address their criticism to Ben-Haim (2001,
2006), not to Sniedovich (2007).

11. In view of this, Los and Tungsong (2008) should do well to read carefully
Ben-Haim (2001, 2006) formulation of Info-Gap decision theory. They will
discover that Ben-Haim’s (2001, 2006) Info-Gap generic robustness model is
as follows:

a(q,re) == max{a :r. < R(q,u),Yu € U(a,u)} , g € Q (7)

Furthermore, they will discover that the theorems in Sniedovich (2007) are
correct, and therefore that my criticism is not only on target, but long overdue.

12. Los and Tungsong (2008) should be also well advised not to confuse their
care-free use of the term “information gap” with the terms “Info-Gap decision
theory” used by Ben-Haim (2001, 2006), Sniedovich (2007), and others.

Summary

My assessment is that Los and Tungsong (2008) are new victims of the various
misconceptions circulating in the literature regarding the role and place of Ben-
Haim’s (2001, 2006) Info-Gap decision theory in decision theory and the kind of
robustness that it espouses.

Specifically, Los and Tungsong (2008) are wrong in concluding that by some
magic secret powers Ben-Haim’s (2001, 2006) Info-Gap decision theory is capable
of taking care of incomplete information by expanding/contracting the known set of
“states of Nature”. I ascribe this misconception, to a large extent, to the excessive
use of the term “Knightian uncertainty” in the Info-Gap literature.

Talking about Knightian uncertainty, it is interesting to note that the center
piece of Ben-Haim’s (2001, 2006) Info-Gap decision theory, namely its robustness
model, is identical to the robust model presented in Ben-Haim’s (1996) book entitled
Robust Reliability in the Mechanical Science , where there is no mention of the term
“Knightian uncertainty” and where it is not assumed that the uncertainty is severe.

Also interesting is the fact that although the term “information gap” does ap-
pear a number of times in Ben-Haim’s (1996) book, it does not appear in the title
of the book.

From the “information gap” perspective, it is not clear at all what is accom-
plished in Los and Tungsong (2008). What exactly is accomplished by replacing
terms such as “model uncertainty” and “uncertainty gap” in Los’s (1999) models
with more exotic terms such as “Knightian uncertainty” and “information gap”?
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3 Anatomy of three buzz words

In this section I take a quick look at three buzz words associated with the Info-
Gap/Maximin saga, namely

- Knightian uncertainty
- Information-gap
- Maximin

The first two are very popular in the Info-Gap literature. The third is an anath-
ema there and I take the liberty of adding that I am very pleased that this is so.
Furthermore, I am also very pleased that, to a large extent, this is due to my Max-
imin, Info-Gap and Voodoo decision-making campaigns (www.moshe-online.com).

3.1 Knightian uncertainty

This type of uncertainty is named after the economist Frank Hyneman Knight
(1885-1972), who was one of the founders of the so-called “Chicago school of eco-
nomics” and who is credited with the distinction between “risk” and “uncertainty”.

To preserve the distinction which has been drawn in the last chapter
between the measurable uncertainty and an unmeasurable one we may
use the term “risk” to designate the former and the term “uncertainty”
for the latter. The word “risk” is ordinarily used in a loose way to refer
to any sort of uncertainty viewed from the standpoint of the unfavorable
contingency, and the term “uncertainty” similarly with reference to the
favorable outcome; we speak of the “risk” of a loss, the “uncertainty” of a
gain. But if our reasoning so far is at all correct, there is a fatal ambiguity
in these terms, which must be gotten rid of, and the use of the term
“risk” in connection with the measurable uncertainties or probabilities
of insurance gives some justification for specializing the terms as just
indicated. We can also employ the terms “objective” and “subjective”
probability to designate the risk and uncertainty respectively, as these
expressions are already in general use with a signification akin to that
proposed.

The practical difference between the two categories, risk and uncertainty,
is that in the former the distribution of the outcome in a group of in-
stances is known (either through calculation a priori or from statistics
of past experience), while in the case of uncertainty this is not true, the
reason being in general that it is impossible to form a group of instances,
because the situation dealt with is in a high degree unique. The best
example of uncertainty is in connection with the exercise of judgment or
the formation of those opinions as to the future course of events, which
opinions (and not scientific knowledge) actually guide most of our con-
duct.

Knight (1921, II1.VIII.1-2)

Personally, 1 prefer the following quote from a paper by the famous British
economist John Maynard Keynes (1883 - 1946), whose ideas, known as “Keynesian
economics”, had a major impact on modern economic and political theory.

12



By “uncertain” knowledge, let me explain, I do not mean merely to
distinguish what is known for certain from what is only probable. The
game of roulette is not subject, in this sense, to uncertainty; nor is the
prospect of a Victory bond being drawn. Or, again, the expectation
of life is only slightly uncertain. Even the weather is only moderately
uncertain. The sense in which I am using the term is that in which
the prospect of a European war is uncertain, or the price of copper
and the rate of interest twenty years hence, or the obsolescence of a
new invention, or the position of private wealth owners in the social
system in 1970. About these matters there is no scientific basis on which
to form any calculable probability whatever. We simply do not know.
Nevertheless, the necessity for action and for decision compels us as
practical men to do our best to overlook this awkward fact and to behave
exactly as we should if we had behind us a good Benthamite calculation
of a series of prospective advantages and disadvantages, each multiplied
by its appropriate probability, waiting to be summed.

Keynes (1937, pp. 213-5)

The term “Knightian uncertainty” is very popular in the Info-Gap literature.
For instance, it appears about 43 times in Los and Tungsong (2008).

But how exactly is the severity of the “Knightian uncertainty” actually mani-
fested in Ben-Haim’s (2001, 2006) Info-Gap robustness model?

Let’s see.

This is Ben-Haim’s (2001, 2006) Info-Gap robustness model:
a(q,re) == max{a > 0:7. < R(q,u),Yu e U(a,0)} , g € Q (8)

The important thing to note is that

- denotes the estimate of the parameter of interest whose true value is subject

to || severe || uncertainty.

Under these conditions we have to assume, as Info-Gap decision theory does,
that @ is

[ g

- A ‘poor indication ‘ of the true value of the parameter of interest

— Likely to be ‘ substantially wrong‘ .

- According to Ben-Haim (2006, p. 210), the total region of uncertainty is typi-

cally , so typically the value of &(q,r.) is minute relative to the

size of the total region of uncertainty.

As T have shown on many occasions (see Appendix), this means that in accor-
dance with the GIGO Axiom?, the results generated by this model are also wild
guesses that are likely to be substantially wrong.

It is precisely because of this “local” characteristic of Ben-Haim’s (2001, 2006)
Info-Gap robustness model that I regard Ben-Haim’s (2001, 2006) Info-Gap decision
theory as a classical Voodoo Decision Theory par excellence.

3Garbage In - Garbage Out.
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3.2 Information gap

I do not know who coined term “information gap” and when this was done. Many
attribute it to J. Galbraith (1973) book Designing Complex Organizations (1973).
In this book Galbraith discusses, among other things, the importance of the the
disparity between the information available to an organization and the information
needed by the organization to perform its business operations.

However, for the record, try as I did, I could not find the magic term “informa-
tion gap” in this book.

A quick Google and Amazon (books) searches immediately reveal how buzzy
the term “information gap” is these days. It appeared in the title of a publication
at least as early as 1979 and there are numerous books whose titles include this
term. In particular, “bridging the information gap” is a very popular title/subtitle
of books and articles in many fields.

Very broadly speaking, today “information gap” means “the disparity between
two or more information contents”.

This, of course, does not say much about the gap itself and what it represents,
and this is why the term is such a useful/useless buzz word — depending on the
context. And this is precisely why it should be used with care in the context of a
discussion of a specific theory that utilizes this term.

Likewise, derived terms such as “information gap model” and “information gap
theory” should be use with care, as they can mean different things to different
people and/or in different contexts.

For example, consider the meaning of “information gap model” in the following
quote:

The

turalist terms than those of its current formulation, as cultural barriers
also have very material effects.

‘information gap’ model || may need to be redefined in more cul-

David Morley
Television, audiences and cultural studies
Routledge, 1992 (p. 218)

What exactly is the “information gap model” in this context?

And how about the meaning of the term “information gap theory” in the fol-
lowing three related quotes:

Right-Handed Cats and the Gap Theory of Curiosity
Are cats right- or left-pawed? Do they favor a paw the way we favor a
hand?

If you’re like me, this question made you curious. So let’s leave the
world of cats for a second and consider the meta-question: What kinds
of things make people curious?

Psychologists have wrestled with this mystery for many years. In 1994,
George Loewenstein, a behavioral economist at Carnegie Mellon, came

up with a theory of curiosity. He called it the|| “information-gap theory.”

He said that curiosity is simple: It comes when we feel a gap between
what we know and what we want to know. And he goes further: He
said that the gap actually causes us a kind of pain 7 like an itch that
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we need to scratch. And that’s where the “fire” of curiosity comes from
? we are driven to fill the gap, to scratch the itch.

Chip and Dan Heath

February 20th, 2007

Powell’s Books

http://www.powells.com/blog/7p=1854

Consistent with this view, the || information-gap theory || views curiosity

as arising when attention becomes focused on a gap in one’s knowl-
edge. Such information gaps produce the feeling of deprivation labeled
curiosity. The curious individual is motivated to obtain the missing in-
formation to reduce or eliminate the feeling of deprivation.
Loewenstein (1994, p. 87)

Lack of curiosity about others as a result of the failure to recognize
information gaps may be a contributing factor to the well-documented
resistance of stereotypes to change. At the same time, however, the

information-gap theory || suggests a possible solution to the problem.

If people are made aware of their stereotypes and of the predictions they
make on the basis of them, they may become curious to know whether
their predictions are correct.

Loewenstein (1994, p. 94)

What exactly is Loewenstein’s (1994) information-gap theory?

In short, to-reiterate, terms such as “information gap model” and “information
gap theory” should be use with care, as they can mean different things in different
contexts.

This is why I am very careful to make it crystal clear that my Info-Gap Cam-
paign deals explicitly and exclusively with Ben-Haim’s (2001, 2006) Info-Gap deci-
sion theory.

More specifically, this is why I am very careful to make it crystal clear that my
Maximin, Info-Gap, and Voodoo Decision-Making Campaigns (www.moshe-online.com)
are about the flaws in Ben-Haim’s (2001, 2006) Info-Gap decision theory whose
generic robustness model is as follows:

a(g,re) = max {a >0:7. < R(q,u),Yu € U(a,u)} , g € Q 9)

For some inexplicable reason, although Los and Tungsong (2008) are fully aware
of this fact, they take the liberty of assuming — erroneously — that in Sniedovich
(2007) my criticism of Ben-Haim’s (2001, 2006) Info-Gap decision theory applies to

any || information gap models.

Back to the buzzword.

The thing to note, though, is that as buzzy as the term “information gap ”
is these days in the Info-Gap literature, it possesses no magic powers and is not
capable, on its own, to overcome the challenges of decision-making under severe
uncertainty.

Replacing the term “uncertainty gap”, or the term “discrepancy” with the term
“information gap” in a description of a model in an old paper will not change the
model itself, nor its contribution to the state of the art.
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As far as science is concerned, what is important is the substance that a term
represents, not its current level of buzziness. To paraphrase a colleague, “ it is
perfectly OK these days to include some spin in publications and grant applications,
but there should be some substance behind the spin”.

In view of the extensive use of this term in Los and Tungsong (2008), it is
appropriate to have a look at how it is used and what it represents in the framework
of Ben-Haim’s (2001, 2006) Info-Gap decision theory.

So recall that in the context of Ben-Haim’s (2001, 2006) Info-Gap decision the-
ory, this term refers to the DISPARITY between the ESTIMATE we have of the pa-
rameter of interest, and the TRUE (unknown) value of this parameter.

Thus, within the scope of Ben-Haim’s (2001, 2006) Info-Gap decision theory —
where the uncertainty in the true value of the parameter of interest is assumed to
be SEVERE — this “gap” is subject to SEVERE uncertainty.

It should be pointed out, however, that other than using a catchy term to
describe a mundane quantity — the disparity between an estimate and the true
value of the parameter of interest — Ben-Haim’s (2001, 2006) Info-Gap decision
theory, more specifically its robustness model, does not grapple at all with the
quantification of the uncertainty as such.

In other words, in the context of Ben-Haim’s (2001, 2006) Info-Gap decision
theory, the term “information gap” itself does not represent any approach (new
or old) to the old and difficult problem: quantification and management of severe
uncertainty. As indicated above, the term simply means “the DISPARITY between
the ESTIMATE and the TRUE VALUE of the parameter of interest”.

So given that the term “information gap” itself and what it represents is no silver
bullet for dealing with severe uncertainty, the question arises: what exactly is the
secret weapon that Ben-Haim’s (2001, 2006) Info-Gap decision theory presumably
provides for handling severe uncertainty? Specifically, what exactly is the hidden
magic in

a(q,re) = max{a:r. < R(q,u),Vu € U(a, 1)} (10)

that supposedly enables Ben-Haim’s (2001, 2006) Info-Gap decision theory to yield
robust decisions under severe uncertainty?

As explained above, this is a rhetorical question the short answer to which is:
There isn’t any!

The long answer is a bit longer.

The non-probabilistic characteristic of this model is governed by the V symbol.
That is, the model assumes that Nature always selects the WORST w in U(«, 1),
where “worst” means “ the least attractive element of U(«a, @) as far as the perfor-
mance requirement r. < R(q,u) is concerned”.

In practical terms this means that in response to the decision maker’s choice
of a ¢ € Q and an a > 0, Nature (namely Uncertainty) will always try to find a
u € U(a, ) that violates the performance requirement.

This, in turn, means that a rational decision maker will not choose a pair (g, @)
such that some u € U(«, @) violates the performance requirement r. < R(q,u).

In short, the robustness of a decision ¢ is the largest value of « such that the
performance constraint is satisfied for all u € U(«, @). Hence,

a(q,re) = max{a:r. < R(q,u),Yu e U(a,u)} , g € Q (11)
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Talking about buzz words, in the parlance of classical decision theory this entire
story is summarized by one word: Maximin.

The long story is as follows:

3.3 Maximin

This paradigm was formulated by the Hungarian born mathematician Abraham
Wald (1902 - 1950), the founder of the field of statistical sequential analysis.
In plain language the recipe provided/dictated by this paradigm is as follows:

Maximin Maxim (Wald 1945, 1950)
Rank alternatives by their worst possible outcomes. That is, adopt the
alternative the worst outcome of which is at least as good as the worst

outcome of the others.

This is precisely what Ben-Haim’s (2001, 2006) Info-Gap robustness model does:
it ranks alternatives (values of a)) based on the outcome («) associated with the
worst u € U(a, u) with respect to the performance requirement. For a given value
of ¢ and a given value of « there are then only two types of u in U (o, w): a “good”
u and “bad” w. The former satisfies the requirement r. < R(q,u) the latter does
not.

In short, the best (optimal) a for a given decision ¢ is the largest value of «
such that the worst u in U(«, ) is “good”.

In any case, the thing about the buzz word “Maximin” is that there is a substan-
tial substance behind it. Indeed, Maximin is the prime tool of thought in classical
decision theory (Resnik 1987, French 1988) and robust optimization (Kouvelis and
Yu 1997, Ben-Tal et al 2006) .

Formally, Wald’s (1945, 1950) Maximin model has two popular equivalent generic
mathematical formulations, namely

Classical Format Mathematical Programming Format
max min f(a,s) = max {a:a< f(a,s),Vs e S(a (12)
e min f(09) = g o< Sl ). Vo € S(0)

(6%

where

- A denotes the set of alternatives (decisions).

- S(a) denotes the set of states associated with alternative a.

- f(a,s) denotes the outcome (payoff) generated by a (a, s) pair.

In case you do not see it, Ben-Haim’s (2001, 2006) Info-Gap robustness model
is the instance of the generic Maximin model that is specified by the following
constructs:

a=(0) (13

5 — (14)
A=Q x[0,00) (15)
S(a) =U(a,a) , a=(q,«) (16)
f(a,s) =a(r. X R(q,s)) , a=(q,a) (17)



where

1 <
Y= { =y (18)
0 , 2>y
That is,
THEOREM (Sniedovich 2007):
Info-Gap Format Classical Maximin Format
max{a: 1. < R(q,u),Yu € U(o,7)} = max min «a-(r. < R(q,u)) (19)

a>0 ueld (o,u)

Proof. See (77).

In short, the good old buzz word “Maximin” can easily express the idea encap-
sulated in Ben-Haim’s (2001, 2006) Info-Gap robustness model. It has been doing
this kind of things — and much more — for more than 60 years.

Indeed, as indicated above, Wald’s (1945, 1950) Maximin model is still one of
the most important tools of thought in decision theory (Resnik 1987, French 1988)
and robust optimization (Kouvelis and Yu 1997, Ben-Tal et al 2006).

3.4 Discussion

The following two comments on the SlashDot (news for nerds. Stuff that mat-

ters) website were triggered by a post entitled “AJAX Reinvigorates

Javascript” .4
Given the low tech (household) meaning of the word AJAX, the first comment
should have been anticipated:

AJAX also good for ... (Score:5, Funny)
by Anonymous Coward on Tuesday May 24 2005, @12:19PM (#12624346)
cleaning tub

cleaning toilet
getting first post

The second comment is more interesting and its last sentence is not only in-
sightful but also very relevant to our discussion.

Are we sure it’s the buzzword? (Score:5, Insightful)
by twifosp (532320) on Tuesday May 24 2005, @12:48PM (#12624671)

I find it hard to believe that the buzzword itself breathed life back into
Javascript like the title implies.

I think maybe the slick apps like google maps is finally showing what
good code CAN do, instead of the bloated bug ridden javascripting of
yesterday.

Or maybe I'm just not transcending expectations by thinking outside of
the box, and therefore my toolset isn’t capable of brigding the informa-
tion gap causing a chasm with my ability to think forwardly.

4See http://it.slashdot.org/article.pl?sid=05/05/24/159211&from=rss.
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I'm struggling to identify which is worse: The day when we report that
a buzzword has made progress, or the day a buzzword actually creates
progress.

Buzz words have their role and place in decision theory. But they should be
used with care, in moderation and for a purpose.

But the trouble with Ben-Haim’s (2001, 2006) Info-Gap decision theory is not
with the buzz words that it deploys. This is definitely not what my criticism of it
is all about.

Rather, its failure to recognize the extent of its relationship with Maximin is
the issue here. Instead of presenting its robustness model for what it is — a sim-
ple instance of Wald’s (1945, 1950) Maximin model — this model is presented as
something new that is radically different from all current models of decision-making
under severe uncertainty. In fact, Ben-Haim (1999, 2005) actually claims that Info-
Gap’s robustness model is not a Maximin model!

But this is only part of the story. The other part is that for some inexplicable
reason Ben-Haim’s (2001, 2006) robustness model applies the Maximin maxim ex-
pressly in the immediate neighborhood of the estimate 4. Under severe uncertainty
this is unacceptable because the results generated by Ben-Haim’s (2001, 2006) ro-
bustness model are only as good as the estimate on which they are based. Under
conditions of severe uncertainty this estimate is a wild guess and therefore so are
the results generated by Info-Gap’s robustness model.

In short, in my view Ben-Haim’s (2001, 2006) Info-Gap decision theory is a
VOODOO DECISION THEORY. More specifically, it is a voodoo application of the
Maximin maxim.

4 Conclusion

The real story behind Ben-Haim’s (2001, 2006) Info-Gap decision theory is not
the buzz word “information gap”. The theory handles uncertainty in the usual
Maximin manner. But its insistence on conducting this type of worst-case analysis
expressly in the immediate neighborhood of a poor estimate renders this theory
unsuitable for decision-making under uncertainty.

Yet, Ben-Haim’s (2001, 2006) Info-Gap decision theory is presented and pro-

moted exactly for this purpose: decision-making under uncertainty.

This fundamental flaw is precisely the reason behind my Maximin, Info-Gap,
and Voodoo Decision Theory Campaigns (www.moshe-online.com).

Regarding Los and Tungsong (2008), as we have seen, it is a perfect example
of the danger in off-the-cuff commentary on a concrete theory the title of which is
buzzy.

Los and Tungsong (2008) are either not aware of the fact that Ben-Haim’s (2001,

2006) Info-Gap decision theory is based on a robustness model, namely
on

a(q,re) :=max {a > 0:7r. < R(q,u),Vu e U(a,w)} , ¢ € Q (20)

or, have failed to note that my criticism of Ben-Haim’s (2001, 2006) Info-Gap
decision theory refers implicitly and exclusively to ... (surprise, surprise!) Ben-
Haim’s (2001, 2006) Info-Gap decision theory and to ...no other theory.
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Be it as it may, their commentary is misguided.

This episode vividly illustrates the point that progress in decision theory will
not be achieved by deployment of buzz words and the re-invention of old wheels.

I examine Los and Tungsong (2008) specific comments on the Info-Gap/Maximin
connection in the Appendix.
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Appendix

A My criticism of Info-Gap decision theory

Info-Gap decision theory (Ben-Haim 2001, 2006) is a relatively young non-probabilistic
theory that seeks robust decisions under conditions of SEVERE uncertainty. The of-
ficial Info-Gap literature does not have any doubt as to Info-Gap’s role and place
in decision theory. Indeed, the message is crystal clear®:

Info-gap decision theory is || radically different‘ from || all || current theo-

ries of decision under uncertainty. The difference originates in the mod-
elling of uncertainty as an information gap rather than as a probability.
The need for info-gap modeling and management of uncertainty arises in

dealing with ‘severe lack of information‘ and highly unstructured un-

certainty.
Ben-Haim (2006, p. xii)

In this book we concentrate on the fairly new concept of information-
gap uncertainty, whose differences from more classical approaches to

uncertainty are || real and deep ||. Despite the power of classical decision

theories, in many areas such as engineering, economics, management,

medicine and public policy, a need has arisen for a ‘diﬁerent format‘

for decisions based on severely uncertain evidence.
Ben-Haim (2006, p. 11)

This is re-enforced by Info-Gap aficionados who seem to regard Info-Gap as a
sort of “breakthrough” in decision theory and its contribution to decision theory as
fundamental. For instance, you can find these assessments on the flyers® of the 2nd
edition of the Info-Gap book (Ben-Haim, 2006):

Professor Yakov Ben-Haim has written a landmark book. ... His information-
gap modeling approach to decision making under uncertainty constitutes

a new and approach for addressing tough decision prob-

lems when little information is available.

Prof. Keith Hipel, Dept. of Systems Design Engineering, University of
Waterloo, Canada.

Ben-Haim’s book is widely in demand by those in my field because of its

strategy implications.

Cliford C. Dacso, MD, MBA, Distinguished Research Professor, Univer-
sity of Houston, John S. Dunn Sr. Research Chair in General Internal
Medicine.

The strange thing is that even the most superficial examination of Info-Gap
decision theory reveals that its generic non-probabilistic robustness model is not

5Color is added in this page and elsewhere in this article for emphasis
Swww.technion.ac.il/~yakov/flyer02final.pdf , www.technion.ac.il/~yakov/flyer01.pdf
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radically different from models that have been used in the framework of classical
decision theory for more than sixty years.

In fact, it is a simple exercise to show that this model is an instance of one
the most famous models in classical decision theory, namely Wald’s (1945, 1950)
Maximin model.

Moreover, it is also a simple exercise to show that this specific instance of Wald’s
Maximin model is utterly unsuitable for the treatment of SEVERE uncertainty. This
is so because the model is LOCAL in nature: it conducts the robustness analysis in
the IMMEDIATE NEIGHBORHOOD of an ESTIMATE of the parameter of interest.

But, alas, according to Info-Gap’s decision theory, under conditions of severe
uncertainty the estimate is a wild guess, a poor indication of the true value of the
parameter of interest and is likely to be substantially wrong. Thus, an application
of the universal GIGO” Aziom warns us that the results generated by Info-Gap’s
robustness analysis are also wild guesses, of poor quality, and are likely to be
substantially wrong.

So, in short, Info-Gap’s robustness model does not tackle SEVERE uncertainty, it
simply IGNORES it. This is surprising given the subtitle of the two Info-Gap books
(Ben-Haim 2001, 2006): decisions under severe uncertainty.

In this appendix I quickly go, again, through a formal analysis of the two main
flaws in Info-Gap’s decision theory:

8

- The misconception about its relationship with Wald’s Maximin model.
- The local nature of Info-Gap’s robustness model.

I shall then briefly explain the flaws in Los and Tungsong’s (2008) assessment
of the relationship between Ben-Haim’s (2001, 2006) Info-Gap decision theory and
Wald’s (1945, 1950) Maximin model.

A.1 The decision problem

For the purposes of this discussion it is important to distinguish between the deci-
sion problem addressed by Ben-Haim’s (2001, 2006) Info-Gap decision theory and
the model that this theory deploys to formulate this problem formally.

In this section I examine the decision problem itself and in the next section I
take a look at Ben-Haim’s (2001, 2006) Info-Gap generic robustness model for this
problem. I deliberately use Ben-Haim’s (2001, 2006) notation for this purpose?.

The generic problem under consideration is described by the following four sim-
ple objects:

- A decision space Q.
This set contains all the decisions available to the decision maker.

- An uncertainty space, 4.
This set represents the uncertainty in the true value of the parameter of in-
terest. Let u denote a generic element of Y. All we know is that one of the
elements of U is the true value of the parameter of interest, but we do not
know which one.

"Garbage In - Garbage Out

8Details on other flaws can be found elsewhere. See my website moshe-online.com

9There is one exception: I use the symbol i to denote the complete uncertainty space. Most of the
Info-Gap articles do not refer to this set explicitly. In the two Info-Gap books (Ben-Haim 2001, 2006)
the symbol S is used for this purpose.
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- A performance function R = R(q,u).
Formally R is a real-valued function on Q x l.

- A critical performance level, r..
This is a real number representing the minimum performance level that the
performance function is required to achieve.

Our objective is to find the BEST decision, where
Best = most robust with respect to the performance constraint r. < R(q,u). (21)

Ideally then, we search for a decision ¢ € Q that satisfies the performance

requirement || for all || u € L

R(q,u) >r., Vued (22)

We shall refer to such a decision as a super-robust decision and let Q@* denote
the set of all the super-robust decisions, namely let

Q" = {(]G Q:TCSR(%U) ’ \V/UEL[} (23)
It is instructive to distinguish between the following three cases in relation to
the cardinality of set O*:
- |@*| = 0: There are no super-robust decisions.
- |@*| = 1: There exists exactly one super-robust decision.
-+ |@*| > 1: There exists more than one super-robust decision.

Only the first case is of interest to us in this discussion, so henceforth we assume
that |Q*| = 0. Regarding the other two cases:

- If |Q*| = 1 then the sole element of Q* is the “best” decision.

- If |Q*| > 1 then secondary criteria are used to select the “best” decision in
Q*
Back to our case, namely |Q*| = 0.

The question is this: given that there are no super-robust decisions, what is a
proper definition of robustness in this case? Given a pair of decisions, how do we
determine which one is more robust?

Given that the uncertainty under consideration is SEVERE, it is intuitively ob-
vious what kind of robustness the performance constraint under consideration,
namely r. < R(q,u), calls for:

A ROBUST decision is one that satisfies the performance re-
quirement r. < R(q,u) over a LARGE region (subset) of the
uncertainty space 4.

With this in mind, let V(gq) denote the subset of 4 over which decision ¢ satisfies
the performance requirement, namely define

V(g):={ueld:r.<R(qu)}, g€ Q (24)

Note that by definition V(q) C ,Vq € Q and that V(q) = U for some ¢ € Q iff
q is a super-robust decision.
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In any case, for a decision ¢ to be robust, V(q) should be a relatively large subset
of the uncertainty space 4l.

So the decision problem under consideration can be stated more formally as
follows:

Find a decision ¢ € Q such that V(q) = {u € 4 :r. < R(q,u)}
is as LARGE as possible.

However, strictly speaking this problem is not well defined because we have not
yet defined how we measure the size of the sets V(q),q € Q.

So let 7 denote a real-valued function on the power set of the uncertainty space
Y and interpret 7(U) as the SIZE of set U C Y. The essential properties of 7 are
then as follows:

U cU" — (U < 7(U") (25)
p(0) =0 (26)

where () denotes the empty set. Observe that this implies that 7(U) > 0,YU C
WU # 0.

In other words, we require 7(U) to be increasing with the “size” of set U, and
therefore the size of a set should be larger than the size of any of its (proper)
subsets.

We can regard the size of V(q), namely

p(q) =7(V(g) =7({u€l:r. < R(q,u)}) , ¢€Q (27)

as the ROBUSTNESS of decision q.
The decision problem under consideration is then to find the most robust deci-
sion:

= 28
p" = max p(g) (28)

Note that in view of (25), it follows from (27) that

p(q) : =7 {ueth:re < R(q,u)}) (29)
= [S]lélzl{T(U) :1re < R(q,u),Yu € U} (30)

In words, the best decision is one that satisfies the performance requirement
re < R(q,u) over the LARGEST subset of the uncertainty set .

The appearance of sup, rather than max, in this expression is a reflection of the
fact that we have not imposed any conditions on the argument of 7, neither did we
require 7 to be continuous. Hence, there is no guarantee that 7 attains a maximum
value on the power set of 4.

So, to rid the discussion of technical diversions of this kind, consider this:

ASSUMPTION:

sup {7(U) : 7. < R(q,u),Yu € U} = max {7(U) : r. < R(q,u),Yu e U}  (31)
Ucs UCu

for all g € Q.
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For instance, this will be the case when [4| < oo, namely in cases where the
uncertainty space 4 consists of finitely many elements.
In any case, under this assumption, the robustness of a decision is as follows:

plg) :=71(V(q)) = nUlgﬁ{T(U) ire < R(q,u),Vue U}, g€ Q (32)

In words,

The ROBUSTNESS of a decision is the “size” of the largest re-
gion of uncertainty over which the decision satisfies the per-
formance requirement.

So as we can clearly see, the crux of the matter is to find a meaningful and
useful formulation (definition) for the “size” of a region of uncertainty, namely the
size of a subset of the uncertainty space 4.

Comment: Needless to say, the definition of “size” — hence its interpretation
as robustness — must be handled with care and must be, in one way or another,
compared with the “size” of the uncertainty space 4. Indeed, in the framework of
the preceding discussion robustness is a “relative” notion: we ask ourselves how
large the “safe” part of U is, that is the part where the performance requirement is
satisfied. This part can be very large in some absolute sense, but very small relative
to the uncertainty space U, and vice versa.

*

It should also be pointed out that in the above formulation the robustness of
a decision is regarded as a global property in that a priori we do not confine the
analysis to any particular region of the uncertainty space { under consideration.
This is a reflection of the fact that in this discussion we are dealing with decision-
making under SEVERE uncertainty. In this environment there is no reason to restrict
the analysis to any particular subset of {. We therefore ask ourselves:

What is the LARGEST subset of the uncertainty space over
which the performance requirement can be satisfied?

So far so good.

A.2 Info-Gap’s robustness model

In contrast to the GLOBAL attitude towards robustness that we took in the dis-
cussion so far, Ben-Haim’s (2001, 2006) Info-Gap decision theory adopts a very
LOCAL approach. For this reason a key role in Ben-Haim’s (2001, 2006) Info-Gap
robustness model is played by an ESTIMATE of the true value of the parameter of
interest u € 4.

In other words, Ben-Haim’s (2001, 2006) Info-Gap decision theory assumes that
we have in our possession an estimate, call it @, of the true value of the parameter
of interest, and that robustness is a LOCAL property measured in the IMMEDIATE
NEIGHBORHOOD of this estimate.

So much so, that Ben-Haim’s (2001, 2006) Info-Gap regions of uncertainty are
nested sets centered at the estimate 4. More formally, Ben-Haim’s (2001, 2006)
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Info-Gap robustness model deploys a family of sets U(c,u) C U, o« > 0 — centered
at u — with the NESTING property

U(,a) CU(a+¢e,a) , Ya,e >0 (33)
U0, a) = {a} (34)

The parameter « represents the “size” of the region U(«, @) and is interpreted
as the “horizon of uncertainty”. A schematic layout of these regions is shown in
Figure 1. The concentric circles represent the uncertainty regions whose center
point represents the estimate %. The radius of a circle represents the “size”, «, of
the region of uncertainty.

Figure 1: Info-Gap regions of uncertainty, U (o, @), > 0

For simplicity we assume that the performance constraint r. < R(q,u) is sat-
isfied by all decisions ¢ € Q at v = w. This is just a modeling technicality: if
re > R(g,u) for some decision ¢ € Q then this decision can be discarded at the
outset.

So in this framework the robustness of decision ¢ is the largest value of « such
that the performance requirement is satisfied for all u in U(a,@). More formally,
the robustness of decision ¢ is defined as follows:

a(q,re) :=max {a:r. < R(q,u),Yu € U(a,u)} , g € Q (35)

Consequently, the “best” decision is one whose robustness, namely &(q, r.) value,
is the largest.

To appreciate the difficulties with the local nature of Ben-Haim’s (2001, 2006)
Info-Gap robustness model, consider the case where 4 =R, & =0, r. = 0 and

U, a):=[—a,a] , >0 (36)
R(¢,u) : =14 6u* —6lu| , u € R := (—00,00) (37)
for some decision ¢’ € Q.

Then according to Ben-Haim’s (2001, 2006) Info-Gap robustness model the
robustness of this decision is as follows:

a(q',re) s =max {a:r. < R(¢,u),Yu € U(a, )} (38)
=max {a:0 < 1+ 6u® —6Jul,Yu € [—a,al} (39)
= 0.21132486540519 (40)
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Note that in this example the uncertainty space is the entire real line R and that
decision ¢ satisfies the performance requirement everywhere on this space except
on the very small intervals

AT = [0.21132486540519, 0.7886751345981] (41)
A~ = [~0.7886751345981, —0.21132486540519] (42)

This is shown graphically in Figure 2.

Yy

2 -
I

A~ AT
U
—1 0 1
Figure 2: y = 1 + 6u? — 6|u
So clearly, globally, that is over Y = (—o00,00), this decision is extremely

robust. But according to Ben-Haim’s (2001, 2006) Info-Gap robustness model
this decision is not robust at all: it is “safe” only on the very small interval
[—0,0],0 = 0.21132486540519.

The local nature of Ben-Haim’s (2001, 2006) Info-Gap’s robustness model man-
ifests itself more clearly when we compare the robustness of two decisions. So, for
example, consider another decision, say ¢” € Q, for which

R(¢",u): =02 —42® , u € R := (—00,00) (43)

Then according to Ben-Haim’s (2001, 2006) Info-Gap robustness model the
robustness of this decision is as follows:

a(q" re) : =max {a:r. < R(¢",u),Vu € U(a, 1)} (44)
= max {a:0< 0.2 —4u? Yu € [—a,al} (45)
= v0.05 = 0.22360679774998 (46)

Since a(q¢”,rc) > a(d,re), it follows that — according to Ben-Haim’s (2001,
2006) Info-Gap decision theory — decision ¢” is more robust then decision ¢'.

This does not make much sense:
- ¢’ is robust on almost the entire region of uncertainty.

- ¢" is robust only on a minute subinterval of the entire region of uncertainty.
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R(q',u) =1+ 6u? — 6|u

Figure 3: A comparison of R(¢/,u) =1+ 6u® — 6|u| and R(¢",u) = 0.2 — 4u?

28



- Yet Ben-Haim’s (2001, 2006) Info-Gap decision theory claims that ¢” is more
robust than ¢'.

Figure 3 speaks for itself.
This is a manifestation of the fact that by definition Ben-Haim (2001, 2006)

regards robustness as a ||local || property exhibiting the behavior of the performance

function in the immediate neighborhood of the estimate.

Recall that the robustness of a decision 4 la Info-Gap is the size of the largest
region of uncertainty over which the decision satisfies the performance requirement
at all points in the region. But there is a fine print to this description. It reads as
follows:

Warning

Info-Gap’s regions of uncertainties, U (o, @),« > 0, are nested and are all cen-
tered at @. Therefore, by definition, robustness &4 la Info-Gap is a local property
that does not necessarily represent robustness over the entire region of uncer-
tainty Ll.

For this reason Info-Gap’s robustness model is unsuitable for decision-making
under severe uncertainty. It does not tackle the severity of the uncertainty, it
simply ignores it.

Comment: Ben-Haim’s (2006) Info-Gap decision theory correctly argues that
under conditions of SEVERE uncertainty the estimate u is a wild guess, a poor
indication of the true value of the u and can be substantially wrong.

It is therefore astonishing that the same theory deploys a local robustness model
that conducts the robustness analysis solely in the immediate neighborhood of this
estimate.

This is the reason why I regard Ben-Haim’s (2001, 2006) Info-Gap decision
theory as a VOODOO DECISION THEORY par excellence. A formal critique of Ben-
Haim’s (2001, 2006) Info-Gap robustness model can be found on my website and on
WIKIPEDIA!. T briefly discuss a related flaw of Ben-Haim’s (2001, 2006) Info-Gap
robustness model in §A.4. *

A.3 The Minimax connection

The Info-Gap literature is emphatic that Ben-Haim’s (2001, 2006) Info-Gap ro-
bustness model is not a Maximin model. For example, Ben-Haim (1999, pp. 271-2)
argues as follows:

We note that robust reliability is emphatically not a worst-case analy-
sis. In classical worst-case min-max analysis the designer minimizes the
impact of the maximally damaging case. But an info-gap model of un-
certainty is an unbounded family of nested sets: U(a,u), for all a > 0.
Consequently, there is no worst case: any adverse occurrence is less dam-
aging than some other more extreme event occurring at a larger value of
a. What Eq. (1) expresses is the greatest level of uncertainty consistent
with no-failure. When the designer chooses ¢ to maximize &(q,7.) he
is maximizing his immunity to an unbounded ambient uncertainty. The

10See www.wikipedia.com/wiki/info-gap decision_theory
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closest this comes to “min-maxing” is that the design is chosen so that
"bad” events (causing reward R less than r.) occur as “far away” as
possible (beyond a maximized value of &).

As I repeatedly explained on many occasions and in many articles, such state-
ments betray a serious misconception about worst-case analysis and the type of
worst-case analysis that Ben-Haim’s (2001, 2006) Info-Gap robustness analysis is
conducting. I give it another go here, so here it comes.

Ben-Haim (1999, pp. 271-2, and in other articles) confuses two distinct worst-
case analyses:

- Worst case analysis of R(q,u) over u € il

- Worst-case analysis of the performance requirement r. < R(q,u) over U(a, U)
for a given value of a.

The issue as to whether there is a worst case for R(q,u) over u € 4l is not
on the agenda in the framework of Ben-Haim’s (2001, 2006) Info-Gap robustness
analysis. That is, Ben-Haim’s (2001, 2006) Info-Gap robustness analysis is not
interested at all in the value of R(q,u) per se: all that it is interested in is whether
the performance constraint 7. < R(q,u) is satisfied.

Differently put: Ben-Haim’s (2001, 2006) Info-Gap robustness is not about
R(q,u) as such, it is about the constraint r. < R(q,u).

Thus, strictly speaking the argument that R(q, u) does not have a worst case over
u € 4 is not relevant at all to our discussion. Nevertheless, I must say something
about this idea here because .. .it is so wrong from a technical point of view. But
in order not to disturb the flow of the discussion, I discuss this point in §A.8.

Now, by inspection, Info-Gap’s robustness model (Ben-Haim 2001, 2006), namely

a(q,re) :=max {a:r. < R(q,u),Yu € U(a,u)} , g € Q (47)

is precisely a worst-case analysis of the latter type: the V requirement insists that
whether or not a given value of « is “safe” with respect to a given decision ¢
is determined by the worst u in U(a,u) as far as the constraint r. < R(q,u) is
concerned.

Indeed, the existence of such a worst case is precisely what prevents the robust-
ness from increasing indefinitely. In particular, consider some arbitrary decision,
call it ¢/, and assume that o/ := &(¢',r.) < 0.

Since Ben-Haim’s (2001, 2006) Info-Gap regions of uncertainty are nested, it
follows that for any ¢ > 0 there exists a v’ € U(o/ + ¢, u) such that R(¢/,u’) < ..
In other words, U(a/ + ¢,4) contains a worst-case value of u: this value violates
the performance requirement 7. < R(q’,u), and there is no more damaging u in the
uncertainty space.

Ben-Haim’s (2001, 2006) Info-Gap robustness model does not distinguish be-
tween various levels of violations of the performance constraint: the constraint is
either satisfied or violated. If r. > R(¢',u) for some u € U(w, @) then — according
to Ben-Haim’s (2001, 2006) Info-Gap’s robustness model — « is too large.

This simple observation provides the modeling “hint” as to how we should go
about formulating Ben-Haim’s (2001, 2006) Info-Gap’s robustness model as a Max-
imin model (Wald 1945, 1950) . That is, consider the “penality” function

« , Te é R(qv U)

, g€ Q,a>0,uella,u 48
—00 ) Tc>R(Q7u) e ( ) ( )

flg,a,u) = {
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By construction, if ¢ € Q,a > 0,u € U(a, @) then

Te S R(q7u) — f(Q7 Oé,’LL) =« (49)
re > R(q,u) «— f(q,a,u) = —o0 (50)

Thus, the huge penalty imposed by this function if we violate the performance
constraint will insure that we do not increase the value of « to allow a u € U(«, @)
to violate the performance constraint.

In short,

MAXIMIN THEOREM:

Ben-Haim’s (2001, 2006) Info-Gap robustness models is a simple instance of Wald’s
Mazximin model. Specifically,

Info-Gap Robustness Model Classical Maximin Format

alg7e) = max{a: 1o < Rlg,u), Yo € Ula, @)} = max win f(g.0u) (1)
azl ueld(a,u

Proof.
Classical Maximin Format Mathematical Programming Format
max min f(¢,a,u) = max {z: 2z < f(q,a,u),Yu € U(a,u)} (52)
a>0 ueld(a,i) a>0
zeR
= max {a:a < f(g,a,u),Vu € U(a,a)} (53)
a_
= max {a:r. < R(q,u),Yu e U(a,0)} (54)
az

Info-Gap Robustness Model
=max {a>0:r. < R(q,u),Vu € U(a,u)} (55)

As clearly indicated by this simple Maximin model (Wald 1945, 1950), Info-
Gap’s robustness model (Ben-Haim 2001, 2006) conducts its worst-case analysis
over each of the regions of uncertainty U (o, @), > 0, one-at-a-time so to speak,
rather then on the entire uncertainty space .

However, if you are allergic to doing the worst-case analysis over the sets
U(a, ), > 0, and prefer to conduct it always over the entire uncertainty space i,
simple let

a , r.<R(qu),uelln)

) , g€ Q,a>0,ueci (56)
—o00 , otherwise

9(q, o, u) = {

in which case

MAXIMIN COROLLARY: for any ¢ € Q we have

a(q,r.) = max{a:r. < R(q,u),Yu € U(a,0)} = m%( miﬁ 9(q, o, u) (57)
a>0 ue

In short, Ben-Haim’s (2001, 2006) Info-Gap’s robustness model is a simple Max-
imin model (Wald 1945, 1950). More on this fact can be found on my website and
on WIKIPEDIA.
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A.4 The (Mis)-Treatment of severe uncertainty

As indicated by the subtitle!! of the two Info-Gap books (Ben-Haim, 2001, 2006),
and as repeatedly emphasized in the official Info-Gap literature, Ben-Haim’s (2001,
2006) Info-Gap decision theory is supposed to tackle SEVERE uncertainty.

But as I have repeatedly shown in my articles and presentations, Info-Gap
is doing the exact opposite. In other words, Ben-Haim’s (2001, 2006) Info-Gap
robustness model simply IGNORES the severity of the uncertainty it is supposed to
tackle.

This is so because Ben-Haim’s (2001, 2006) Info-Gap robustness model is LOCAL
in nature: it examines only the IMMEDIATE NEIGHBORHOOD of the given estimate
of the parameter of interest. As a result, in principle, Ben-Haim’s (2001, 2006)
Info-Gap robustness model is utterly invariant to changes in the severity of the
uncertainty under consideration.

Formally, this fundamental flaw in Ben-Haim’s (2001, 2006) Info-Gap decision
theory can be stated in terms of the severe insensitivity of Ben-Haim’s (2001, 2006)
Info-Gap robustness model to the “size” of the uncertainty space u:

INVARIANCE THEOREM (Sniedovich 2007):

The robustness of a decision is invariant with the uncertainty space il.
More specifically, let ¢* be an arbitrary decision, set o = a(q*,7.) + €,
where ¢ is any strictly positive number (can be arbitrarily small, but
positive).

Then the robustness of ¢* is invariant with 4 for all 4 such that
U(a*, i) C U (58)

Proof. Directly from the nesting property of Info-Gap’s regions of un-
certainty. That is, from the definition of &(q*,r.) it follows that for any
e > 0 there is a u* € U(&(q*,r.),u) such that r. > R(q*,u*). The nest-
ing property implies then that u* € U(&(q*,r.)+¢,a) for all & > 0. This
in turn implies that &(q*, ) is independent of 4 as long as U (a*, @) C $L.
*

This invariance property of Ben-Haim (2001, 2006) Info-Gap robustness model
is illustrated graphically in Figure 4. Here, the robustness of decision ¢* remains
unchanged regardless by how much we increase the uncertainty space: it is the
same for any set  containing U (a*,a).

In this particular illustration, the robustness of ¢* remains the same as we
increase the uncertainty space from ', to {”, to U” and to U””. In fact, the
robustness of ¢* will remain the same as long as 4 contains U (a*, ).

This is truly incredible!

Here we have a decision theory that claims to deal specifically with SEVERE
uncertainty, yet its robustness model is so utterly insensitive to the severity of the
uncertainty, measured by the “size” of the uncertainty space. Indeed, this insensi-
tivity is what makes Info-Gap decision theory (Ben-Haim 2001, 2006) a VOODOO
DECISION THEORY par excellence:

HDecisions Under Severe Uncertainty
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u/l/l
ﬂlll

Figure 4: Invariance property, a* = &(q*,7.) + ¢

No worries, mate!
A wild guess and its immediate neighborhood will do!!

If we accept this recipe then how would we distinguish SEVERE uncertainty
from a VERY MILD uncertainty where the estimate we have is a very good — but not
perfect — indication of the true value of the parameter of interest?

The fact of the matter is that Info-Gap decision theory (Ben-Haim 1996, 2001,
2006) does not distinguish between very mild uncertainty and severe uncertainty.

A.5 The “How wrong can the model and data be?”
myth

One finds in the Info-Gap literature numerous claims that Info-Gap theory is ca-
pable of answering questions such as these:

How wrong can the model and data be without jeopardizing the quality of
the outcome?

How wrong can this model be before I should change my decision?

Such claims represent a serious misconception of Info-Gap’s definition of robust-
ness. To begin with, there is no way of knowing how wrong the model and data are
because the true value of the parameter of interest is unknown — indeed is subject to
severe uncertainty. And, Info-Gap’s robustness is evaluated only in the immediate
neighborhood of this poor estimate.

The correct interpretation of Info-Gap robustness is as follows:

The robustness of a decision is the maximum deviation from a

given estimate ‘

such that the performance requirement is satisfied for every value of the
parameter in the immediate neighborhood of the estimate stipulated by
this deviation.
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That is, by definition Info-Gap’s robustness is an inherently ||local || property.

The picture is this:

B True value

— correct wrong + Estimate

— wrong wrong
Safe region around the estimate

In other words, all that Info-Gap’s robustness tells us is how “safe” we are in
the immediate neighborhood of the estimate.

The trouble is, of course, that subject to severe uncertainty the estimate is a
wild guess, ...a poor ...substantially wrong, ...etc, etc, etc.

As I indicated already, it is a simple exercise to construct examples where a
decision is highly robust in the neighborhood of the estimate, but fragile elsewhere
in the total region of uncertainty, and vice versa.

In any case, it is really amazing how many analysts mistakenly interpret the
definition of Info-Gap’s robustness as being global while in fact it is crystal clear
that it is local.

A.6 Voodoo decision theories

In my criticism of Ben-Haim’s (2001, 2006) Info-Gap decision theory (eg. this
paper) I have been making frequent references to VOODOO DECISION THEORY. In
this section I explain what I mean by this and why I consider Ben-Haim’s (2001,
2006) Info-Gap decision theory a classical voodoo decision theory.

According to Encarta online Encyclopedia

Voodoo n

1. A religion practiced throughout Caribbean countries, espe-
cially Haiti, that is a combination of Roman Catholic rituals
and animistic beliefs of Dahomean enslaved laborers, involving
magic communication with ancestors.

2. Somebody who practices voodoo.

3. A charm, spell, or fetish regarded by those who practice
voodoo as having magical powers.

4. A belief, theory, or method that lacks sufficient evidence or
proof.

The last meaning applies here:

A vooDOO decision theory is a decision theory that lacks sufficient evi-
dence or proof.

The question is then: what kind of evidence or proof should we use to certify a
decision theory to be non-Voodoo?

This is a difficult question.
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There are no agreed upon criteria for such proofs and evidences and therefore
it is not clear how this issue can be resolved.

However, in the case of Ben-Haim’s (2001, 2006) Info-Gap decision theory the
situation is quite simple because we can apply the universal GIGO Axiom,!?

namely
GIGO Axiom
Garbage In — MNiodel | — Garbage Out
Wrong — Miodel | — Wrong
Wild Guess — | )JT00el | — Wild Guess

In fact, we can be more specific here:

The robustness of any decision and the risk incurred in making that de-

cision is || only as good as the estimates || on which it is based. Making

estimation even more challenging, virtually all estimates that affect de-

cisions are uncertain. Uncertainty can not be eliminated, but it can be
managed.

Top Ten Challenges for Making Robust Decisions

The Decision Expert Newsletter, Volume 1; Issue 2

http://www.robustdecisions.com/newsletter0102.php

Using this convention we conclude that the results generated by a robustness
model are only as good as the estimates on which they are based. This suggests
the following:

SUFFICIENT CONDITION:
Any decision theory whatsoever that knowingly does not subscribe to the GIGO
Axiom is a Voodoo Decision Theory.

THEOREM
Ben-Haim’s (2001, 2006) Info-Gap decision theory is a Voodoo Decision
Theory.
Proof.
- Ben-Haim’s (2001, 2006) Info-Gap decision theory is designed specif-
ically for decision-making under uncertainty.

- Info-Gap theory is fully aware of the fact that under these conditions

the estimate 4 is a and is likely to be ‘ substantially wrong.

- Thus, Info-Gap’s robustness model knowingly confines its analysis

to the immediate neighborhood of a ‘poor estimate‘ that is likely

to be || substantially wrong. ‘

12Garbage In — Garbage Out.
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- Thus, Info-Gap decision theory does subscribe to the GIGO
AXIOM.

- Hence, Info-Gap decision theory is a Voodoo Decision Theory. %

In a nutshell, robustness a la info-gap is defined in total disregard for the severity
of the uncertainty. I usually describe this debacle as a Treasure Hunt. The picture
is this:
- The island represents the region of uncertainty under con-
sideration (the region where the treasure is located).

Treasure Hunt

- The tiny black dot represents the estimate of the parameter
of interest (estimate of the location of the treasure).

- The large white circle represents the region of uncertainty
affecting info-gap’s robustness analysis.

- The small white square represents the true (unknown) value
of the parameter of interest (true location of the treasure).

Hence, info-gap may conduct its robustness analysis in the vicinity of Brisbane
(QLD), whereas for all we know the true location of the treasure may be somewhere
in the middle of the Simpson desert (AUS) or perhaps in down town Melbourne
(VIC). Perhaps.

A.7 The “That’s the best we have!” syndrome

Proponents of Info-Gap decision theory do not refute my criticism as such, they
just do not agree with my ...conclusions.
There seems to be a sort of an agreement on the following points:

- Under severe uncertainty we have to assume that the estimate is a wild guess
and is likely to be substantially wrong.

- Info-Gap’s robustness is, by definition, local in nature in that it evaluates
resilience to change in the neighborhood of an estimate.

- Info-Gap’s robustness does not tell us much the robustness of decisions over
the entire region of uncertainty.

- Actually, Info-Gap decision theory does not tackle the severity of the uncer-
tainty under consideration.

My conclusion is that the above means that
- Info-Gap decision theory is fundamentally flawed.

- Info-Gap decision theory is unsuitable for robust decision-making under severe
uncertainty

Let me explain:

Given that Info-Gap decision theory presents itself, and is promoted, as
a theory designed specifically for decisions under uncertainty,
it is obvious that it is flawed and that it fails to deliver the goods.

But it is more than that. The flaw is || fundamental || To wit:
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By localizing the robustness analysis to the immediate neigh-
borhood of an estimate that is known to be a wild guess and
is likely to be substantially wrong, Info-Gap decision theory
demonstrates complete disrespect for what the GIGO AXiom
stands for and what it represents.

In other words, Ben-Haim’s (2001, 2006) emphasizes the challenges posed by
severe uncertainty — yet completely ignores these very challenges in the formulation
of the robustness model. Indeed, if you care to probe this matter more closely
you would compare the first book on Info-Gap, entitled Robust reliability in the
Mechanical Sciences (Ben-Haim 1996), to the two more recent ones (Ben-Haim
2001, 2006), and you will discover that the notion severe uncertainty — now the
fulcrum of info-gap — is something of an afterthought. In other words, you will
discover that in the 1996 book no mention whatsoever is made of the uncertainty
under consideration being severe. To the contrary, the overall impression is that
the uncertainty is very mild.

Yet, precisely the same model, employing precisely the same treatment of un-
certainty, is transferred lock stock and barrel to the two more recent info-gap books
(Ben-Haim, 2001, 2006) whose concern is with decision under severe uncertainty.
So, inexplicably, the selfsame methodology suddenly becomes a methodology for
dealing with severe, in fact Knightian, uncertainty.

But Info-Gap proponents are not impressed at all by these arguments. They
counter my criticism by the following

That’s the best estimate we have!

My reply is that the fundamental flaw in Info-Gap decision theory is not that it
utilizes an inferior estimate. Under severe uncertainty the best estimate we have is
still a wild guess and is likely to be substantially wrong. This is a fact of life which
we have to accept.

The fundamental flaw in Info-Gap decision theory is that it does not do anything
about the severity of the uncertainty. This, I remind my Info-Gap colleagues, is in
sharp contrast to the manner in which severe uncertainty is managed by ROBUST
OPTIMIZATION METHODS (Kouvelis and Yu 1997, Ben-Tal et al 2006) and ROBUST
DECISION-MAKING (Lempert et al 2006).

But Info-Gap proponents are not convinced by this argument:

However, a major purpose of decision analysis is to provide focus for sub-
jective judgments. That is, regardless of the formal analysis, a frame-
work for discussion is provided. Without entering into any particular
framework, or characteristics of frameworks in general, discussion fol-
lows about proposals for such frameworks.

WIKIPEDIA

http://en.wikipedia.org/wiki/Info-gap_decision_theory

I have to admit that I find it extremely difficult to figure out the meaning of
the last two sentences in this quote. I suspect that they argue that my criticism
does not mean that Info-Gap decision theory is completely useless. For, regardless
of its flaws, the theory does provides a framework for discussion.

Indeed, I had a number of interesting discussions on the degree of uselessness
of Info-Gap decision theory.
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However, I leave it to the reader to decide on this issue, recalling that Info-
Gap decision theory is supposed to be a theory that seeks robust decisions under

conditions of uncertainty — actually ‘Knightian uncertainty‘ .

A.8 Worst-case analysis over unbounded regions

Ben-Haim (eg. 1999, 2005) persistently argues that Info-Gap’s robustness model is
not a Maximin model and that robustness & la Info-Gap is not a worst-case analysis.
For example,

We note that robust reliability is emphatically not a worst-case analy-
sis. In classical worst-case min-max analysis the designer minimizes the
impact of the maximally damaging case. But an info-gap model of un-
certainty is an unbounded family of nested sets: U(a,u), for all a > 0.
Consequently, there is no worst case: any adverse occurrence is less dam-
aging than some other more extreme event occurring at a larger value of
a. What Eq. (1) expresses is the greatest level of uncertainty consistent
with no-failure. When the designer chooses ¢ to maximize &(q,7.) he
is maximizing his immunity to an unbounded ambient uncertainty. The
closest this comes to “min-maxing” is that the design is chosen so that
"bad” events (causing reward R less than r.) occur as “far away” as
possible (beyond a maximized value of &).

Ben-Haim (1999, pp. 271-2)

Before we consider Info-Gap’s robustness model, let us immediately dispel the
notion that Maximin analysis cannot be conducted on unbounded sets.

Consider the following classical Maximin problem that I have been using in my
undergraduate teaching for a long long time:

* : 2 2
= 2xy — 59
&%= max min {y” + 2zy — 27} (59)
where R denotes the real line.

By inspection, the optimal solution is the saddle point (z*,y*) = (0,0) of the
expression y? 4 2zy — 22 over R?. The graph of this expression is shown in Figure
5.

So what is this idea that the worst-case analysis conducted by Maximin cannot
cope with unbounded regions?

Regarding Ben-Haim’s (2001, 2006) Info-Gap robustness model,

a(q,re) ;= max {a >0:7r. < R(q,u),Yu € U(a, 1)} (60)

if indeed « can increase indefinitely, as suggested by Ben-Haim, how come that the
robustness model is all about maximizing the value of a?

Of course, the answer is that although « can increase indefinitely as far as the
regions of uncertainty are concerned, the performance constraint

re < R(q,u) , Yu € U(a, @) (61)

typically imposes an upper bound on « and the task is precisely to determine this
upper bound.
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Figure 5: Graph of the expression y? + 2xy — 22

The flaw in Ben-Haim’s logic can be seen more clearly when examine the classical
Maximin format of Info-Gap’s robustness model, namely:

a(g,re) = max uelg}(iga) a-(re 2 R(g,u)) (62)
— . mi . < R(q, 63
max - min (re 2 R(q,u)) (63)
= max G(a) - H(g,) (64)
where

Gla)=a,a>0 (65)
H(q,a) := I;l(in~) (re 2 R(q,u)) , ¢€Q,a>0 (66)

ucet(a,u

observing that the nesting property of the regions of uncertainty implies that for a
given ¢, H(q,a) is a step function of «, as shown in Figure 6(a).

In short, a can increase as much as it wishes: if the robustness of decision ¢ is
bounded, then as « increases, sooner or later the objective function of the Maximin
model will drop to zero and will remain there forever. Indeed, the robustness of ¢
is precisely the value of « at which H(q, «) attains it maximal value.

It follows then that Ben-Haim apparently has serious misconceptions regarding
how Maximin conducts it worst-case analysis and how this is related to the way
info-Gap’s robustness model operates as a Maximin model.

In fact, the basic misconception is fundamental. For Ben-Haim essentially argues
that a function whose argument is unbounded does not have a worst-case (minimum
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Figure 6: G(a), H(q,«) and B(q,a) = G(«a) - H(q, o) for a given q.

and/or maximum). So how about, say sin(x) over the real line? Clearly z is
unbounded in this case but sin(z) is bounded below and above.

Ben-Haim’s fundamental error is this: in the framework of Info-Gap’s robustness
model there is definitely a worst-case. That is, the worst case occurs when the
performance constraint r. < R(q,u) is violated. Thus, Ben-Haim’s assertion that

any adverse occurrence is less damaging than some other more extreme
event occurring at a larger value of «
is wrong.

If the performance constraint is violated on U (v, @) for some value of a, then a
larger value of o will not cause a more extreme event.

Technically speaking, the objective function of the Maximin model representing
Info-Gap’s robustness model is not monotone increasing/decreasing with «. After
« is increased above the value of &(q,7.) by the “max” player (the decision maker),
the worst-case is not getting even worst, it stays at the same level. The minimizing
player (Nature) cannot do more harm than violating the constraint.
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