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Abstract. We examine worst-case analysis from the standpoint of classical Decision The-
ory. We elucidate how this analysis is expressed in the framework of Wald’s famous Maximin
paradigm for decision-making under strict uncertainty. We illustrate the subtlety required in
modeling this paradigm by showing that information-gap’s robustness model is in fact a Max-
imin model in disguise.
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1. Introduction

Worst-case analysis gives expression to what seems to be an instinctively natural, albeit
a potentially costly, approach to managing uncertainty. Witness for instance the popular
saying: hope for the best, plan for the worst!

Our objective in this paper is to examine the mathematical treatment that this seem-
ingly intuitive concept is given in classical Decision Theory. In particular, we explain
how worst-case analysis is captured in Wald’s Maximin paradigm, and in what we term
Maximin models in disguise.

The reason that it is important to make this clear is due to the centrality of the Maximin
paradigm. This well established methodology for decision-making under uncertainty is
supported by a substantial body of knowledge, both theoretical and practical, that has
built up over the past eighty years. Hence, identifying Maximin models in disguise is not
just an academic exercise – it has important practical modeling implications. In a word,
it has the effect of illustrating that the art of creative modeling is an important element
in the formulation of Maximin models.

We begin with a brief discussion of the concept worst-case analysis, which includes
its mathematical formulation in the context of input data problems that are subject to
uncertainty. We then introduce the classical and mathematical programming formats of
Wald’s Maximin paradigm. This leads to a discussion of the modeling aspects of the
Maximin paradigm, in particular the issue of Maximin models in disguise.

We conclude with a reminder of the preeminent role that this paradigm plays in the def-
inition of robustness in fields as diverse as optimization, control, economics, engineering,
and statistics.
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2. Worst-Case Analysis

Taking a worst-case approach to uncertainty seems to be something that is second
nature to us. The basic characteristic of this position is summed up in the widely held
adage: When in doubt, assume the worst! So, a “worst case” search of Amazon’s books
database generates a huge number of books and articles with the terms “worst case” and
“worst scenario” in their titles; and a search of the web further reveals how widespread
this concept is in common parlance.

For instance, the following quote is taken from the Vegetarian Society of Ireland Web-
site1:

EDIBLE FAT / FAT
could be animal or vegetable. If in doubt, assume the worst!

But, as noted by Rustem and Howe [19, p. v], the idea goes further back in time:

The gods to-day stand friendly, that we may,
Lovers of peace, lead on our days to age!
But, since the affairs of men rests still incertain,
Let’s reason with the worst that may befall.

Julius Caesar, Act 5, Scene 1
William Shakespeare (1564-1616)

This approach is also known as the Worst-Case Scenario Method and can of course be
formulated in various ways. For instance, consider this2:

Worst Case Scenario Method: Overcoming anxiety by getting com-
fortable with the worst thing that could happen.

In this discussion we shall refer specifically to the abstract mathematical formulation
that this idea is given by Hlaváček [12] for the treatment of input data problems that are
subject to uncertainty. The model consists of three ingredients:

· A state variable u.
· A set Uad of admissible input data.
· A criterion function Φ = Φ(A; u), where A ∈ Uad.

For simplicity we assume that for any input data A ∈ Uad there exists a unique solution,
call it u(A), to the given state problem.

In this setup the uncertainty is with regard to the input data A: It is unknown which
element of the admissible set Uad will be observed, hence it is unknown what state will
be observed.

Assuming that we prefer Φ(A; u) to be small, the Worst Scenario Problem is as follows:

A0 := arg max
A∈Uad

Φ(A; u(A)).(2.1)

In other words, we invoke the maxim “When in doubt, assume the worst!” to resolve
the uncertainty in the true value of A.

With no loss of generality then, assuming that “more is better”, the worst-case scenario
problem can be formulated thus:

z∗ := min
u∈U

f(u)(2.2)

where

· U denotes the uncertainty set.

1http://www.vegetarian.ie/productpage.htm
2http://mindhell.com/About Us.html
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· f denotes the objective function.

Formally, U is an arbitrary set and f is an arbitrary real-valued function on U such
that f attains a (global) minimum on U . Obviously, in situations where “less is better”,
the min in (2.2) is replaced by max.

Note that the term “worst” in this context implies the existence of some implicit ex-
ternal preference structure. Elishakoff [9, p. 6884] points out that this type of worst-case
analysis, which he calls “anti-optimization”, can be combined effectively with optimiza-
tion techniques, citing Adali et al [1, 2] as examples of such schemes in the area of
buckling of structures. Other examples can be found in [6, 17].

But the fact is that for well over eighty years now, beginning with von Neumann’s [27,
28] pioneering work on classical game theory, this has been done routinely not only in
the area of Decision Theory, but in statisics, operations research, economics, engineering
and so on. To demonstrate this point we shall first recall how the worst-case analysis is
encapsulated in Wald’s [29, 30, 31] famous Maximin paradigm.

3. Maximin paradigm

Maximin is the classic mathematical formulation of the application of the worst-case
approach in decision-making under uncertainty. An instructive verbal formulation of the
paradigm is given by the philosopher John Rawls [18, p. 152] in his discussion of his
theory of justice:

The maximin rule tells us to rank alternatives by their worst possible
outcomes: we are to adopt the alternative the worst outcome of which is
superior to the worst outcome of the others.

The careful reader will no doubt observe that the term “superior” is too demanding
here. Hence, consider the following slightly modified version of Rawls’ formulation:

Maximin Maxim

Rank alternatives by their worst possible outcomes: adopt the alternative
the worst outcome of which is at least as good as the worst outcome of the
others.

In classical Decision Theory [10, 20] this paradigm has become the standard non-
probabilistic model for dealing with uncertainty. This has been the case ever since Wald
[29, 30, 31] adapted von Neumann’s [27, 28] Maximin paradigm for game theory by
casting “uncertainty”, or “Nature”, as one of the two players. Here is a simple example
of the Maximin in action in such a framework.

Consider the following decision table where the rows represent alternatives (decisions),
the columns represent the uncertain states (of nature) and the entries represent the
outcomes, say the number of dark chocolate bars you gain.

s1 s2 s3 s4

d1 3 4 2 6
d2 3 49 1 83
d3 3 4 3 4

For the purpose of this exercise assume that you love dark chocolate, so the more the

better.
In the parlance of classical decision theory, the worst outcome associated with a decision

is the security level of the decision. In the framework of the Maximin paradigm, the best
decision is that whose security level is the greatest.
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Thus, to determine the best choice á la Maximin for the problem specified above, we
append a column to the decision table in which we enter the worst outcome for each
decision, namely its security level. Here is what we obtain:

s1 s2 s3 s4 SL
d1 3 4 2 6 2
d2 3 49 1 83 1
d3 3 4 3 4 3

So the best worst-case outcome in this case is the one associated with decision d3,
namely 3 tasty dark chocolate bars.

Note that this outcome, a gain of 3 dark chocolate bars, is extremely robust with
respect to the uncertainty in the value of the state s. In fact, it is the most robust one
can obtain: regardless of how bad the state s will be, one is assured of at least 3 bars.

It is clear from what we have seen thus far that the appeal of the Maximin paradigm
is in its apparent ability to dissolve the uncertainty associated with Nature’s selection of
its states. This is due to the underlying assumption that Nature is a consistent adversary

and as such her decisions are predictable: Nature consistently selects the least favorable
state associated with the decision selected by the DM. This, in turn, eliminates the
uncertainty from the analysis.

The price tag attached to this convenience is, however, significant. By eliminating the
uncertainty through a single-minded focus on the worst outcome, the Maximin may yield
highly “conservative” outcomes [26]. It is not surprising, therefore, that over the years
a number of attempts have been made to modify this paradigm with a view to mitigate
its extremely “pessimistic” stance. The most famous variation is no doubt Savage’s
Minimax Regret model [10, 20, 22]. But, the fact remains that, for all this effort, the
Maximin paradigm provides no easy remedy for handling decision problems subject to
severe uncertainty/variability [11].

4. Math formulations

The first point to note is that the Maximin paradigm can be given more than one
mathematical formulation. For our purposes, however, it will suffice to consider the
two most commonly encountered (equivalent) formulations. These are: the classical

formulation and the mathematical programming formulation. As we shall see, these
formulations can often be simplified by exploiting specific features of the problem under
consideration.

Both formulations employ the following three basic, simple, intuitive, abstract con-
structs:

· A decision space, D.
A set consisting of all the decisions available to the decision maker.

· State spaces, S(d) ⊆ S, d ∈ D.
S(d) denotes the set of states associated with decision d ∈ D. We refer to S as
the state space.

· A real-valued function f on D × S.
f(d, s) denotes the value of the outcome generated by the decision-state pair (d, s).
We refer to f as the objective function.

The decision situation represented by this model is as follows: the DM is intent on
selecting a decision that will optimize the value generated by the objective function f .
However, this value depends not only on the decision d selected by the DM, but also on
the state s selected by Nature.
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Since Nature is a consistent adversary, it will always select a state s ∈ S(d) that is
least favorable to the DM. Thus, if the DM is maximizing, Nature will minimize f(d, s)
with respect to s over S(d). And if DM is minimizing, Nature will maximize f(d, s) with
respect to s over S(d).

4.1. Classical formulation. This formulation has two forms, depending on whether
the DM seeks to maximize or minimize the objective function:

Maximin Model : z∗ = max
d∈D

min
s∈S(d)

f(d, s)(4.1)

Minimax Model : z◦ = min
d∈D

max
s∈S(d)

f(d, s)(4.2)

Note that in these formulations the “outer” optimization represents the DM and the
“inner” optimization – what Elishakoff [9] calls “anti-optimization” – represents Nature.
This means that the DM “plays” first and Nature’s response is contingent on the decision
selected by the DM.

In short, in this framework the worst-case analysis is conducted by Nature, namely by
the “inner” optimization of the Maximin/Minimax formats. The terms “Maximin” and
“Minimax” thus convey in the most vividly descriptive manner the essence of the conflict
between the inner and outer optimization operations.

4.2. Mathematical programming formulation. Often it proves more convenient to
express the above models as “conventional” optimization models by eliminating the “in-
ner” optimization altogether. Here are the equivalent Maximin/Minimax models result-
ing from such a re-formulation of the respective classical models:

Maximin Model Minimax Model
z∗ := max

d∈D
v∈R

v z◦ := min
d∈D
v∈R

v

s.t v ≤ f(d, s) , ∀s ∈ S(d) s.t v ≥ f(d, s) , ∀s ∈ S(d)

(4.3)

where R denotes the real-line.
The “disappearance” of the inner optimization operations is no cause for concern,

observing that these models can also be written as follows:

Maximin Model Minimax Model
z∗ := max

d∈D
v∈R

v z◦ := min
d∈D
v∈R

v

s.t v ≤ min
s∈S(d)

f(d, s) s.t v ≥ max
s∈S(d)

f(d, s)

(4.4)

Note that in this framework the worst-case analysis approach is represented by the
functional constraint.

For our purposes it would be most convenient to formulate these models as follows:

Maximin Model z∗ := max
d∈D
v∈R

{v : v ≤ f(d, s), ∀s ∈ S(d)}(4.5)

Minimax Model z◦ := min
d∈D
v∈R

{v : v ≥ f(d, s), ∀s ∈ S(d)}(4.6)

Also note that in all these formulations v is a decision variable.
The clause “∀s ∈ S(d)” in the functional constraint entails that in cases where the

state spaces are “continuous” rather than discrete, the Maximin model represents a
semi-infinite optimization problem [19].

Since the Minimax model and the Maximin model are equivalent (via the multiplication
of the objective function by -1), we shall henceforth concentrate on the Maximin model.
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5. Modeling issues

The preceding discussion on the mathematical formulation of the Maximin model may
have given the impression that modeling it is a straightforward affair that is carried out
almost effortlessly. Yet, the fact of the matter is that the opposite is true. As indicated
by Sniedovich [23, 24], formulating the components that form part of the model is often
a tricky business that requires of the modeler/analyst considerable insight and ingenuity.

To illustrate this point, consider the following optimization model:

w∗ := max
y∈Y

{f(y) : g(y, u) ∈ C, ∀u ∈ U(y)}(5.1)

where

· Y and C are arbitrary sets.
· f is a real-valued function on Y .
· g is a function on Y × U with values in C.
· For each y ∈ Y the set U(y) is a non-empty subset of U .
· It is assumed that g(y, u) ∈ C, ∀u ∈ U(y) for at least one y ∈ Y .

Here U represents the uncertainty set, namely u represents a parameter whose “true”
value is unknown. All that is known is that u is an element of U .

It should be noted that this model includes, as special cases, Lombardi’s [17] anti-

optimization model and Ben-Haim’s [3, 4] information-gap robustness model.
So, the following question is of interest to us: Is the model stipulated in (5.1) a Maximin

model?
And the answer is: yes it is!

Theorem 5.1.

max
y∈Y

{f(y) : g(y, u) ∈ C, ∀u ∈ U(y)} = max
y∈Y

min
u∈U(y)

h(y, u)(5.2)

where

h(y, u) :=

{
f(y) , g(y, u) ∈ C

−∞ , g(y, u) /∈ C
, y ∈ Y, u ∈ U(y).(5.3)

Proof.

max
y∈Y

min
u∈U(y)

h(y, u) = max
(y,v)∈Y ×R

{v : v ≤ h(y, u), ∀u ∈ U(y)}(5.4)

= max
(y,v)∈Y ×R

{v : v ≤ f(y), g(y, u) ∈ C, ∀u ∈ U(y)}(5.5)

= max
Y ∈Y

{f(y) : g(y, u) ∈ C, ∀u ∈ U(y)}(5.6)

�

For obvious reasons, Sniedovich [24] labels models such as (5.1) Maximin models in

disguise.
To illustrate this point, consider Lombardi’s [17, p. 100] anti-optimization oriented

model:

w◦ := min
x∈X

{
f(x) : 0 ≤ min

p∈P
gj(x, p), j = 1, . . . , N

}
(5.7)

where P represents the uncertainty space. The equivalent Minimax formulation is as
follows:

w◦ : = min
x∈X

max
p∈P

ϕ(x, p)(5.8)
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where

ϕ(x, p) : =

{
f(x) , 0 ≤ gj(x, p), j = 1, . . . , N

∞ , otherwise
, x ∈ X, p ∈ P(5.9)

By the same token, de Faria and de Almeida [6, p. 3960] formulate their optimiza-
tion/antioptimization model explicitly as a Maximin model.

Similarly, consider Ben-Haim’s [4, p. 40] information-gap robustness model

α̂(q, rc) := max

{
α ≥ 0 : rc ≤ min

u∈U(α,ũ)
r(q, u)

}
, q ∈ Q(5.10)

where U(α, ũ) represents a region of uncertainty of size α centered at the estimate ũ of
the true value of the parameter u.

The equivalent Maximin formulation is as follows:

α̂(q, rc) : = max
α≥0

min
u∈U(α,ũ)

σ(q, α.u)(5.11)

where

σ(q, α, u) : =

{
α , rc ≤ r(q, u)

−∞ , rc > r(q, u)
, q ∈ Q, α ≥ 0, u ∈ U(α, ũ)(5.12)

A fuller account of this simple illustration in [23, 24] shows that Ben-Haim’s [4, p. 101]
assertion that information-gap’s robustness model is not a Maximin model is demonstra-
bly erroneous. This reinforces Hlaváček et al’s [13, p. xix] assessment that “. . . The worst
scenario method represents a substantial part of the information-gap theory. . . . ”

Specifically, the worst-case analysis deployed by information-gap decision theory is
represented by the “inner” optimization of the Maximin model (5.11). The “outer”
optimization represents the decision maker’s choice of the “best” (largest) safe region of
uncertainty around the estimate ũ.

More details on the relationship between information-gap decision theory and Wald’s
Maximin paradigm can be found in [24].

For the record we point out that classical Decision Theory also recognizes the “opti-
mistic” approach to uncertainty, captured by the Maximax and Minimin models:

Maximax Model : z∗ = max
d∈D

max
s∈S(d)

f(d, s)(5.13)

Minimin Model : z◦ = min
d∈D

min
s∈S(d)

f(d, s)(5.14)

Here Nature cooperates with the decision-maker, hence it is as if there is in effect only
one “player”:

max
d∈D

max
s∈S(d)

f(d, s) = max
d∈D

s∈S(d)

f(d, s)(5.15)

max
d∈D

max
s∈S(d)

f(d, s) = min
d∈D

s∈S(d)

f(d, s)(5.16)

Hurwicz [15] combined this “optimistic” approach to uncertainty with Wald’s “pes-
simistic” approach to produce the famous optimism-pessimism index (see [10, 20]).

6. Discussion

In classical decision theory, robust optimization, statistics, economics, control theory,
engineering, and so on, the quest for “robustness” is almost synonymous with an applica-
tion of Wald’s “maximin/minimax” paradigm. For instance, Huber [14, p. 17] observes:
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But as we defined robustness to mean insensitivity with regard to small
deviations from assumptions, any quantitative measure of robustness must
somehow be concerned with the maximum degradation of performance
possible for an ǫ-deviation from the assumptions. An optimally robust

procedure then minimizes this degradation and hence will be a minimax
procedure of some kind.

The following quote is the abstract of the entry Robust Control in the on line New

Palgrave Dictionary of Economics, Second Edition (2008), by Noah Williams3:

Robust control is an approach for confronting model uncertainty in deci-
sion making, aiming at finding decision rules which perform well across a
range of alternative models. This typically leads to a minimax approach,
where the robust decision rule minimizes the worst-case outcome from the
possible set. This article discusses the rationale for robust decisions, the
background literature in control theory, and different approaches which
have been used in economics, including the most prominent approach due
to Hansen and Sargent.

More details on the central role played by Maximin in robust optimization can be found
in [5, 16]. Other aspects of this important and well established paradigm are discussed
in [7, 8, 21].

7. Conclusions

From the viewpoint of classical Decision Theory, worst-case analysis in the face of
severe uncertainty is a game between the decision-maker and an antagonistic Nature.
The difference between the worst-case of classical Game Theory and Wald’s paradigm is
that in the latter case the decision maker (DM) plays first, so that Nature’s decision may
depend on the decision selected by the decision maker.

This setup is represented by the “inner” optimization, namely the “min”, of the ab-
stract classical Maximin model

DM
max
d∈D

Nature
min

s∈S(d)
f(d, s)(7.1)

As we have seen, the abstract nature of its three mathematical constructs: the decision
space (D), the collection of state spaces (S(d), d ∈ D) and the objective function f , gives
this simple model great expressive power.

But the other side of the coin is that precisely for this reason, modeling this paradigm
requires an imaginative treatment of its components.
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