AU 00000 RO 0000 Voodooism 0000000000 Info-Gap Conclusions

Black Swans, Modern Nostradamuses, Voodoo Decision Theories, Info-Gaps, and the Science of Decision-Making in the Face of Severe Uncertainty

Moshe Sniedovich

Decision Theory	RO	Voodooism
000000000000	0000	000000000

Program

- How do you make robust decisions in the face of severe uncertainty?
 - Black Swans
 - Modern Nostradamuses
 - Voodoo Decision Theories
 - Info-Gap Decision Theory
 - Classical Decision Theory
 - Australian perspective
 - My Info-Gap Campaign
- Collaboration
- Site visit: decision-making.moshe-online.com
- FAQs

AU Perspective

Decision Theory

AU

00000

What is the most popular methodology for robust decision-making under severe uncertainty in a number of research centers in Australia

AU Perspective: Example

Decision Theory

AU

0000

Planning for robust reserve networks using uncertainty analysis

Voodooism

... In summary, we recommend info-gap uncertainty analysis as a standard practice in computational reserve planning. The need for robust reserve plans may change the way biological data are interpreted. It also may change the way reserve selection results are evaluated, interpreted and communicated. Information-gap decision theory provides a standardized methodological framework in which implementing reserve selection uncertainty analyses is relatively straightforward. We believe that alternative planning methods that consider robustness to model and data error should be preferred whenever models are based on uncertain data, which is probably the case with nearly all data sets used in reserve planning . . .

> Ecological Modelling, 199, pp. 115-124, 2006 Authors: Finland (1), USA (3), Australia (3), Israel (2)

Conclusions

AU 00●00	Decision Theory	RO 000 0000	Voodooism 0000000000	Info-Gap 0000000000	Conclusions
AU Pe	erspective:	Example			
α	εδα	Applied Enviro A Commonwealth smart scien	nmental Decision Ana 1 Environment Research Fo ce for wise dec	lysis mility search iísions	GO
		Com C			

About AEDA	Core Researchers	Research Themes	News	Events	Contact Us	Site Map

Events & Workshops

Home » Events & Workshops

Print version

More Information → Info-Gap Course

UP & COMING ...

15 - 19 Sept, 2008	Info-Gap Applications in Ecological Decision Making (5 Day worksh	op with Prof. Yakov Ben-Haim).
6 - 10 Oct, 2008	Multispecies Management Workshop, Brisbane, Queensland	1000
		6/67

New Secret Weapon Against Severe Uncertainty

 $\hat{\alpha}(q) := \max\{\alpha \ge 0 : r \le R(q, u), \forall u \in U(\alpha, \tilde{u})\}, q \in \mathcal{Q}$

Known as

Info-Gap Robustness Model Ben-Haim (1996, 2001, 2006)

Very popular in a number of research centers in Australia

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions		
00000							
This seminar							

Objective of this seminar

- Overview of classical decision theory (1940-50)
- Overview of Robust Decision-Making (1960s)
- Overview of Voodoo Decision-Making (5000 BC)
- Overview of Info-Gap Decision Theory (1996)
- Progress report on my Info-Gap Campaign (2006 -)
- Raise/Answer questions

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
	••••••				

Classical Decision Theory

Eg.

620-262: Decision Making

Good morning Sir/Madam:

I left on your doorstep four envelopes. Each contains a sum of money. You are welcome to open any one of these envelopes and keep the money you find there.

Please note that as soon as you open an envelope, the other three will automatically self-destruct, so think carefully about which of these envelopes you should open.

To help you decide what you should do, I printed on each envelope the possible values of the amount of money (in Australian dollars) you may find in it. The amount that is actually there is equal to one of these figures.

Unfortunately the entire project is under severe uncertainty so I cannot tell you more than this.

Good luck!

Joe.

AU 00000	Decision Th	eory 00000	R O 0000	Voodooism oooooooooo	Info-Gap 000000000000000000000000000000000000	Conclusions
So	What Do Y	'ou do?				
	Example					
	Envelope	Pos	sible An	nount (Austra	lian dollars)	
	E1		2	0, 10, 300, 78	6	
	E2	2,40000,	102349,	5000000,999	999999, 5643543	32
	E3			201, 202		
	E4			200		

Vote!

- What is a decision problem ?
- How do we model a decision problem?
- How do we solve a decision problem?

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
	00000000000				
Decision	Tables				

Think about your problem as a table, where

- rows represents decisions
- columns represent the relevant possible states of nature
- entries represent the associated payoffs/rewards/costs

Exa	mple						
-	Env Possible Amount (\$AU)						
-	E1	20	10	300	786		
	E2	2	4000000	102349	500000000	56435432	
	E3	201	202				
	E4	200					

Classification of Uncertainty

Decision Theory

Classical decision theory distinguishes between three levels of uncertainty regarding the state of nature, namely

Voodooism

Info-Gap

- Certainty
- Risk
- Strict Uncertainty

Terminology:

Strict Uncertainty \equiv Severe Uncertainty

- \equiv Ignorance
- \equiv True Uncertainty
- \equiv Knightian Uncertainty
- $\equiv \mathsf{Deep}$
- $\equiv \mathsf{Extreme}$
- $\equiv \mathsf{Hard}$
- \equiv Fundamental

Conclusions

Classical decision theory offers two basic principles for dealing with severe uncertainty, namely

- Laplace's Principle (1825)
- Wald's Principle (1940)

Conceptually:

AU Decision Theory RO Voodooism Info-Gap Conclusions

Laplace's Principle of Insufficient Reason (1825)

By symmentry: Assume that all the states are equally likely, thus use a uniform distribution function (μ) on the state space and regard the problem as decision-making under risk.

Laplace's Decision Rule

$$\max_{d \in \mathbb{D}} \int_{s \in S(d)} r(s, d) \mu(s) ds \qquad \text{Continuous case}$$
$$\max_{d \in \mathbb{D}} \frac{1}{|S(d)|} \sum_{s \in S(d)} r(s, d) \qquad \text{Discrete case}$$

Inspired by Von Neumann's [1928] Maximin model for 0-sum, 2-person games: Mother Nature is and adversary and is playing against you, hence apply the worst-case scenario. This transforms the problem into a decision-making under certainty.

Nice Plain Language Formulation

The maximin rule tells us to rank alternatives by their worst possible outcomes: we are to adopt the alternative the worst outcome of which is superior to the worst outcome of the others.

Rawls, J., Theory of Justice, 1971, p. 152

Wald's Maximin Principle (1940)

Historical perspective

The gods to-day stand friendly, that we may, Lovers of peace, lead on our days to age! But, since the affairs of men rests still incertain, Let's reason with the worst that may befall. William Shakespeare (1564-1616) Julius Caesar, Act 5, Scene 1

Classic Format					
You!	Mama				
max	min	$f(\mathbf{d}, \mathbf{s})$			
$d{\in}\mathbb{D}$	$s \in S(d)$				

About Maximin/Minimax formulations

Classical Format					
	$\max_{d\in\mathbb{D}}$	$\min_{\substack{s \in S(d)}}$	f(d,s)		

Mathematical Programming Format

$$\begin{array}{c} \underset{d \in \mathbb{D} \\ v \in \mathbb{R} \end{array}}{\text{You!}} \left\{ v : f(d,s) \geq v \ , \ \forall s \in S(d) \right\} \end{array}$$

Note: if S(d) is "continuous", then this is a semi-infinite program.

Lanlac	bleW av or				
	000000000000000000000000000000000000000				
AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions

Example							
	Env	Dnv Possible Amount (\$AU)					
	E1	20	10	300	786		
	E2	2	4000	102349	50000	56435	
	E3	201	202				
	E4	200					

Example

Env		Possik	ole Amoi	Laplace	Wald		
E1	20	10	300	786		279	10
E2	2	4000	10234	50000	56435	24134.2	2
E3	201	202				201.5	201
E4	200					200	200

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
00000	○○○○○○○○○○○	0000	oooooooooo	000000000000000000000000000000000000	
Laplace	vs Wald				

Example

Env		Possil	ole Amoi	Laplace	Wald		
E1	20	10	300	786		279	10
E2	2	4000	10234	50000	56435	24134.2	2
E3	201	202				201.5	201
E4	200					200	200

WIKIPEDIA

Robustness is the quality of being able to withstand stresses, pressures, or changes in procedure or circumstance. A system, organism or design may be said to be "robust" if it is capable of coping well with variations (sometimes unpredictable variations) in its operating environment with minimal damage, alteration or loss of functionality.

- Applies to both (known) variability and uncertainty
- Origin: probably late 1920's (game theory).
- In OR and Optimization: late 1960s early 1970s.
- Major difficulty: solution procedures.
- A very "hot" area of research these days ...
- See bibliography

[4, 6]

[1, 8]

[1, 2]

[3, 5]

RO

Voodooism

Info-Gap

Robust Decision-Making

Role of Maximin/Minimax in Robustness Analysis

But as we defined robustness to mean insensitivity with regard to small deviations from assumptions, any quantitative measure of robustness must somehow be concerned with the maximum degradation of performance possible for an ϵ -deviation from the assumptions. The optimally robust procedure minimizes this degradation and hence will be a minimax procedure of some kind.

Huber (1981, pp. 16-17)

Experience: Modeling aspects can be subtle!

- Optimizing vs Satisficing
- Complete vs Partial vs Local
- (Mis) Interpretation

Classification

- Robust Satisficing (eg. Soyster (1973), Ben-Tal and Nemirovski (1999))
 Robustness with respect to constraints of a satisficing problem or an optimization problem.
- Robust Optimizing (eg. classical Maximin/Minimax) Robustness with respect to the objective function of an optimization problem.
- Robust Optimizing and Satisficing (eg. Ben-Tal and Nemirovski (2002))
 Robustness with respect to both the objective function and constraints of an optimization problem.

Robust I	Decision-Making	g			
AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
00000	000000000000	0●00	0000000000	000000000000000000000000000000000000	

Classification

Robust Satisficing Problem $P(u), u \in U$: Find an $x \in X$ such that $q(x, \mathbf{u}) \in C$ Robust Optimizing Problem $P(u), u \in U$: $z^* := \operatorname{opt} f(x, \boldsymbol{u})$ $x \in X$ Robust Optimizing and Satisficing Problem $P(u), u \in U$: $z^* := \text{ opt } f(x, \mathbf{u})$ $x \in X(\mathbf{u})$

Degree of Robustness

- Complete (conventional)
 - $\forall u \in \mathcal{U}(x) \text{ (very conservative)}$
- Partial (eg. Starr (1962), Schneller and Sphicas (1983)) $\forall u \in U(x) \subseteq \mathcal{U}(x)$
- Local (eg. Ben-Haim (1996, 2001, 2006) $\forall u \in U(x, \tilde{u}) \subseteq \mathcal{U}(x)$ ($U(x, \tilde{u}) =$ neighborhood of \tilde{u})

Robust	Robust Decision-Making									
00000	0000000000000	0000	0000000000	0000000000	000000000					
AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions					

Robustness á la MaximinComplete robustness $z^* := \max_{d \in \mathbb{D}} \min_{s \in S(d)} f(d, s)$ $= \max_{\substack{d \in \mathbb{D} \\ v \in \mathbb{R}}} \{v : f(d, s) \ge v, \forall s \in S(d)\}$

Maximin models for partial and local robustness are similar (a bit more complicated).

Voodooism

Info-Gap Conclusions

Voodoo Decision Theory

Encarta online Encyclopedia

Voodoo n

- A religion practiced throughout Caribbean countries, especially Haiti, that is a combination of Roman Catholic rituals and animistic beliefs of Dahomean enslaved laborers, involving magic communication with ancestors.
- Somebody who practices voodoo.
- A charm, spell, or fetish regarded by those who practice voodoo as having magical powers.
- A belief, theory, or method that lacks sufficient evidence or proof.

Voodoo	Decision The	eory			
AU 00000	Decision Theory 0000000000000	RO 0000	Voodooism	Info-Gap 0000000000	Conc

Decision Theory 000000000000

RU 0000 Voodooism

Info-Gap Conclusions

Voodoo Decision Theory

Voodoo Decision Theory

Apparently very popular,

Example

The behavior of Kropotkin's cooperators is something like that of decision makers using Jeffrey expected utility model in the Max and Moritz situation. Are ground squirrels and vampires using voodoo decision theory?

> Brian Skyrms Evolution of the Social Contract Cambridge University Press, 1996.

Issue:

Evidential dependence, but causal independence.

 AU
 Decision Theory
 RO
 Voodooism
 Info-Gap
 Conclusions

 00000
 00000000000
 0000000000
 0000000000
 00000000000
 00000000000

The legend

An old legend has it that an ancient treasure is hidden in an Asian-Pacific island.

You are in charge of the treasure hunt. How would you plan the operation?
Main issue: location, location!

1.2.3 Recipe

- Ignore the severity of the uncertainty.
- Socus on the substantially wrong estimate you have.
- Conduct the analysis in the immediate neighborhood of this estimate.

Voodoois	sm				
AU 00000	00000000000000000000000000000000000000	RU 0000	0€0000000	00000000000000000000000000000000000000	Conclusions

Voodoo Decision-Making

Voodoo Decision-Making

Just in case, ..., the difficulty is that

Under severe uncertainty

The estimate we have is

- A wild guess.
- A poor indication of the true value.
- Likely to be substantially wrong.

Hence,

Beware!

Results obtained in the neighborhood of the estimate are likely to be substantially wrong in the neighborhood of the true value.

Voodooiem						
			000000000			
AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions	

$$\begin{array}{c} \text{Conventional Decision Theory} \\ GI \longrightarrow \mathfrak{Model} \longrightarrow GO \\ \text{Wrong} \longrightarrow \mathfrak{Model} \longrightarrow \text{Wrong} \end{array}$$

The robustness of any decision and the risk incurred in making that decision is only as good as the estimates on which it is based. Making estimation even more challenging, virtually all estimates that affect decisions are uncertain. Uncertainty can not be eliminated, but it can be managed.

Top Ten Challenges for Making Robust Decisions The Decision Expert Newsletter, Volume 1; Issue 2 http://www.robustdecisions.com/newsletter0102.php

What is the most popular Voodoo Decision Theory for robust decision-making under severe uncertainty in a number of research centers in

Australia

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
00000	000000000000	0000	0000000000	000000000000000000000000000000000000000	00000

Example

Predicting financial markets

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
00000	000000000000	0000	oooooooooo	000000000000000000000000000000000000	
Example	9				

Applied ecology and conservation biology

AU Decision Theory RO 00000 000000000000 0000 Info-Gap Revisited

Impressive Self-Portrait

Voodooism

Info-Gap

•••••••••••••••••••

Info-gap decision theory is radically different from all current theories of decision under uncertainty. The difference originates in the modelling of uncertainty as an information gap rather than as a probability. The need for info-gap modeling and management of uncertainty arises in dealing with severe lack of information and highly unstructured uncertainty. Ben-Haim [2006, p. xii]

In this book we concentrate on the fairly new concept of information-gap uncertainty, whose differences from more classical approaches to uncertainty are real and deep. Ben-Haim [2006, p. 11]

Conclusions

Obvious Questions

- Does Info-Gap substantiate these very strong claims?
- Are these claims valid?

Not So Obvious Answers

- No, it does not.
- Ocertainly not.

It is therefore important to subject Info-Gap to a formal analysis – that actually should have been done seven years ago:

Info-Gap

FormalvsAnalysisClassical Decision Theory

Good news: should take no more than 5-10 minutes!

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
00000	000000000000	0000	oooooooooo	000000000000000000000000000000000000	
Info-Gap)				

Meaning of Severe Uncertainty

- The region of uncertainty is usually relatively large, often unbounded.
- The uncertainty cannot be quantified by a probabilistic model.
- If there is an estimate of the parameter of interest, then the estimate is
 - A wild guess
 - A poor indication of the true value
 - Likely to be substantially wrong

Practical Meaning of Severe Uncertainty

bio-security homeland-security

Info-Gap Decision Theory

Decision Theory

Complete Generic Robustness Model

Voodooism

Info-Gap

$$\hat{\alpha}(r_c) := \max_{q \in \mathbb{Q}} \max \left\{ \alpha \ge 0 : r_c \le \min_{u \in \mathcal{U}(\alpha, \tilde{u})} R(q, u) \right\}$$
$$\mathcal{U}(\alpha, \tilde{u}) \subseteq \mathcal{U}(\alpha + \varepsilon, \tilde{u}), \forall \varepsilon > 0$$

Region of Severe Uncertainty, U

Conclusions

Complete Generic Robustness Model

$$\hat{\alpha}(r_c) := \max_{q \in \mathbb{Q}} \max \left\{ \alpha \ge 0 : r_c \le \min_{u \in \mathcal{U}(\alpha, \tilde{u})} R(q, u) \right\}$$

Fundamental FAQs

1	Is this new?	Definitely not!
2	Is this radically different?	Definitely not!
3	Does it make sense?	Definitely not!

So what is all this hype about Info-Gap ?!

Good question!

First Impression

Complete Generic Robustness Model

$$\hat{\alpha}(r_c) := \max_{q \in \mathbb{Q}} \max \left\{ \alpha \ge 0 : r_c \le \min_{u \in \mathcal{U}(\alpha, \tilde{u})} R(q, u) \right\}$$

Observations

- This model does not deal with severe uncertainty, it simply and unceremoniously ignores it.
- The analysis is invariant with \mathfrak{U} : the same solution for all \mathfrak{U} such that $\mathcal{U}(\hat{\alpha}(r_c), \tilde{u}) \subseteq \mathfrak{U}$.
- This model is fundamentally flawed.
- This model advocates voodoo decision-making.

First Impression

Fool-Proof Recipe

Step 1: Ignore the severe uncertainty.
Step 2: Focus instead on the poor estimate and its immediate neighborhood.

Region of Severe Uncertainty

Decision Theory Info-Gap Info-Gap Decision Theory First Impression Region of Severe Uncertainty

Recall that this is voodoo decision making!

Info-Gap Decision Theory

Complete Generic Robustness Model

$$\alpha^* := \max_{q \in \mathbb{Q}} \max \left\{ \alpha \ge 0 : r_c \le \min_{u \in \mathcal{U}(\alpha, \tilde{u})} R(q, u) \right\}$$

Fundamental Flaw

AU Decision Theory RO Voodooism Info-Gap Conclusions

More formally

Invariance Theorem (Sniedovich, 2007)

Info-Gap's robustness model is invariant to the size of the total region of uncertainty \mathfrak{U} for all \mathfrak{U} larger than $\mathcal{U}(\alpha^*, \tilde{u})$, where $\alpha^* := \hat{\alpha}(r_c)$. That is, the model yields the same results for all \mathfrak{U} such that

$$\mathcal{U}(\alpha^* + \varepsilon, \tilde{u}) \subseteq \mathfrak{U} \ , \ \varepsilon > o$$

Info-Gap Decision Theory

Info-Gap's Invariance Property

Maximin Theorem (Sniedovich 2007, 2008)

Info-Gap's robustness model is a simple instance of Wald's Maximin model. Specifically,

$$\begin{split} \alpha(q) &:= \max_{\alpha \ge 0} \left\{ \alpha : r_c \le \min_{u \in \mathcal{U}(\alpha, \tilde{u})} R(q, u) \right\} \ , \ q \in \mathbb{Q} \\ &= \max_{\alpha \ge 0} \min_{u \in \mathcal{U}(\alpha, \tilde{u})} \psi(q, \alpha, u) \end{split}$$

where

$$\psi(q, \alpha, u) := \begin{cases} \alpha , r_c \leq R(q, u) \\ 0 , r_c > R(q, u) \end{cases}, \alpha \geq 0, q \in \mathbb{Q}, u \in \mathcal{U}(\alpha, \tilde{u})$$

AU Decision Theory RO Voodooism Info-Gap Conclusions

Info-Gap: Typical misconception

Treasure Hunt

Myth:

How wrong can I be, yet be safe?

- Region of uncertainty.
- Estimate of the location.
 - Region affecting Info-Gap's analysis.
- True (unknown) location.

Fact:

Info-gap may conduct its robustness analysis in the vicinity of Brisbane (QLD), whereas for all we know the true location of the treasure may be somewhere in the middle of the Simpson desert or perhaps in down town Melbourne (VIC). Perhaps.

Australian Perspective

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
					00000
Conclus	ions				

- Decision-making under severe uncertainty is difficult.
- It is a thriving area of research/practice.
- The Robust Optimization literature is extremely relevant.
- The Decision Theory literature is extremely relevant.
- The Operations Research literature is very relevant.
- Info-Gap's robustness model is neither new nor radically different.
- Info-Gap's uncertainty model is fundamentally flawed and is unsuitable for decision-making under severe uncertainty.
- Info-Gap Decision Theory exhibits a severe information-gap about the state of the art in decision-making under severe uncertainty.

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
00000	000000000000	0000	000000000	000000000000000000000000000000000000000	00000

The Ten Natural Laws of Operations Analysis

- Ignore the problem and go immediately to the solution, that is where the profit lies.
- There are no small problems only small budgets.
- Names are control variables.
- Clarity of presentation leads to aptness of critique.
- Invention of the wheel is always on the direct path of a cost plus contract.
- **O** Undesirable results stem only from bad analysis.
- It is better to extend an error than to admit to a mistake.
- Progress is a function of the assumed reference system.
- Rigorous solutions to assumed problems are easier to sell than assumed solutions to rigorous problems.
- In desperation address the problem.

Bob Bedow, Interfaces 7(3), p. 122, 1979.

Conclusions Decision Theory Voodooism Info-Gap Black Swans, Modern Nostradamuses see The Spin Stops Here! Search me! Decision-Making Under Severe Fags | Help | @ | Contact | Uncertainty Logon time: Mon May 4 06:03:23 2009

decision-making.moshe-online.com

mighty maximin robust decisions responsible decisions

voodoostan info-gap decision theory severe uncertainty

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
				000000000000000000000000000000000000000	00000

FAQs?

AU Decision Theory RO Voodooism Info-Gap Conclusions

Bibliography

- Ben-Haim, Y. 1996. *Robust Reliability in the Mechanical Science*, Springer Verlag.
- Ben-Haim, Y. (1999). Design certification with information-gap uncertainty, *Structural Safety*, 2, 269-289.
- Ben-Haim, Y. 2001. *Information Gap Decision Theory.* Academic Press.
- Ben-Haim, Y. 2006. Info-Gap Decision Theory. Elsevier.
- Ben-Haim, Y. 2008. Info-Gap Forecasting and the Advantage of Sub-Optimal Models, European Journal of Operational Research, in press.
- Ben-Tal A. & Nemirovski, A. 1999. Robust solutions of uncertain linear programs, *OR Letters*, 25, 1-13.

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
					0000

- Ben-Tal A. & Nemirovski, A. 2002. Robust optimization methodology and applications, *Mathematical Programming, Ser. B*, 92, 453?480.
- Ben-Tal A. El Ghaoui, L. & Nemirovski, A. 2006. Mathematical Programming, Special issue on Robust Optimization, 107(1-2).
- Cagetti, M., Hansen, L.P., Sargent, T., and Williams, N. 2002. Robustness and Pricing with Uncertain Growth, *The Review of Financial Studies*, 15, 2, 363-404.
- Davidovitch, L. and Ben-Haim, Y. 2008. Profiling for crime reduction under severely uncertain elasticities, working paper www.technion.ac.il/ yakov/IGT/lior15prof.pdf.
- Dembo, R.S. 1991. Scenario optimization. Annals of Operations Research 30(1): 63-80.

- Demyanov, V.M. and Malozemov, V.N. 1990. Introduction to Minimax, Dover.
- Du, D.Z. and Pardalos, P.M. 1995. *Minimax and Applications*, Springer Verlag.
- Eiselt, H.A., Sandblom, C.L. and Jain, N. 1998. A Spatial Criterion as Decision Aid for Capital Projects: Locating a Sewage Treatment Plant in Halifax, Nova Scotia, *Journal* of the Operational Research Society, 49(1), 23-27.
- Eiselt, H.A. and Langley A. 1990. Some extensions of domain criteria in decision making under uncertainty, *Decision Sciences*, 21, 138-153.
- Francis, R.L., McGinnis, Jr, L.F. & White, J.A. 1992. *Facility Layout and Location: An Analytical Approach.* Prentice Hall.

AU 00000	Decision Theory 000000000000	RO 0000	Voodooism 0000000000	Info-Gap ೦೦೦೦೦೦೦೦೦೦೦೦೦	Conclusions 0000●
	French, S.D. 19	88. Decisio	on Theory, Elli	s Horwood.	
	Hall, J. & Ben- Decisions (Whe www.floodriskne	Haim, Y. 2 n it Seems t.org.uk/a/2	007. Making F that You Can 2007/11/hall -b	Responsible 't). penhaim.pdf.	
	Huber, P.J. 198	1. Robust	Statistics. Wil	ey, New York.	
	Kouvelis, P. & ` and Its Applicat	Yu, G. 1997 <i>tions.</i> , Kluw	7. <i>Robust Disc</i> <i>v</i> er.	crete Optimizati	on
	Rawls, J. (2005 Cambridge, MA). Theory o	of <i>Justice</i> , Bel	knap Press,	

- Reemstem, R. and Rückmann, J. (1998). *Semi-Infinite Programming*, Kluwer, Boston.
- Resnik, M.D. 1987. *Choices: an Introduction to Decision Theory.* University of Minnesota Press: Minneapolis.

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
					00000

- Rosenhead M.J, Elton M, Gupta S.K. 1972. Robustness and Optimality as Criteria for Strategic Decisions, Operational Research Quarterly, 23(4), 413-430.
- Rustem, B. & Howe, M. 2002. Algorithms for Worst-case Design and Applications to Risk Management. Princeton University Press.
- Schneller G.O. and Sphicas, G.P. (1983). Decision making under uncertainty: Starr's Domain criterion, Theory and Decision, 15, 321-336.
- Skyrms, B. 1996. *Evolution of the Social Contract,* Cambridge University Press.
- Sniedovich, M. 2007. The art and science of modeling decision-making under severe uncertainty. *Journal of Manufacturing and Services*, 1(1-2): 111-136.
Decision Theory Sniedovich, M. 2008. Wald's Maximin Model: A Treasure in Disguise! Journal of Risk Finance, 9(3), 287-291.

Voodooism

Info-Gap

- A. L. Soyster, A.L. 1973. Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming, it Operations Research, 21(5), 1154-1157.
- Starr, M.K. 1962. Product design and decision theory, Prentice-Hall, Englewood Cliffs, NJ.
- Starr, M. K. 1966. A Discussion of Some Normative Criteria for Decision-Making Under Uncertainty, Industrial Management Review, 8(1), 71-78.
- Tintner, G. 1952. Abraham Wald's contributions to econometrics. The Annals of Mathematical Statistics 23(1): 21-28.

Conclusions

AU	Decision Theory	RO	Voodooism	Info-Gap	Conclusions
					0000

- Vladimirou, H. & Zenios, S.A. 1997. Stochastic Programming and Robust Optimization. In Gal, T, & Greenberg H.J. (ed.), Advances in Sensitivity Analysis and Parametric Programming. Kluwer.
- von Neumann, J. 1928. Zur theories der gesellschaftsspiele, *Math. Annalen*, Volume 100, 295-320.
- von Neumann, J. and Morgenstern, O. 1944. *Theory of Games and Economic Behavior*, Princeton University Press.
- Wald, A. 1945. Statistical decision functions which minimize the maximum risk, *The Annals of Mathematics*, 46(2), 265-280.
- Wald, A. 1950. Statistical Decision Functions. John Wiley.