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Abstract

This discussion provides crystal-clear answers to the following two central ques-
tions regarding the role and place of Info-Gap in decision theory:

Q -1 Is Info-Gap really a new theory that is so radically different from all classical
theories for decision-making under uncertainty? Or is it in fact just a simple
instance of Wald’s [1945] Maximin model – the most famous model in classical
decision theory under severe uncertainty?

Answer: Info-Gap’s generic model is an instance of Wald’s Maximin model.

Q -2 Does Info-Gap generate robust solutions under severe uncertainty? Or does it
actually ignore severe uncertainty?

Answer: Info-Gap does not deal with severe uncertainty – it simply ignores it.

We explain in detail the flaws in Ben-Haim’s [2007] answers to these and other
related questions.

1 Introduction

Over the past four years I have expressed my constructive criticism on the role and place
of Info-Gap theory in decision-making under severe uncertainty. At the end of 2006 I
documented my views and made them public. My website

www.ms.unimelb.edu.au/∼ moshe/infogap/infogap.html

provides articles and presentations on this topic.
In this article I address, yet again, the following two central questions regarding the

role and place of Info-Gap in decision theory:

FAQ-1 Is Info-Gap really a new theory that is so radically different from all classical
theories for decision-making under uncertainty? Or is it in fact just a simple
instance of Wald’s [1945] Maximin model – the most famous model in classical
decision theory under severe uncertainty?

FAQ-2 Does Info-Gap generate robust solutions under severe uncertainty? Or does it
actually ignore severe uncertainty?
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For anyone unfamiliar with my papers on these topics, these questions are rhetorical.
As I have shown repeatedly, providing categorical answers to these questions is a very
simple task indeed. What is more difficult is to convince Info-Gap aficionados to accept
these answers and their implications.

The first question is important because it calls attention to the fact that Info-gap is
presented and promoted as a new theory that is radically different from all current theories
for Decision making Under Sever Uncertainty. My point is that these claims are made in
the absence of a single reference to the most celebrated paradigm for Decision Making
Under Sever Uncertainty: Wald’s Maximin Model. Indeed, not only is a discussion about
Info-Gap’s relation to Wald’s Maximin Model totally absant from the two editions of the
Infogap book. The Maximin is not so much as mentioned in them. This of course is
inexcusable.

The situation is in fact more serious. For although there has been significant progress
on this front recently to the effect that now Ben-Haim [2007] concedes that Info-Gap is
closely related to Maximin, he still insists that Info-Gap’s generic model is not a Maximin
model.

To reiterate, on showing that Info-Gap’s generic model is merely an instance of Wald’s
classic Maximin model, not only do we pull the rug out from under the contention that
Info-Gap is a new and radically different decision theory, we also call into question Info-
Gap’s familiarity with the state of the art in decision-making under severe uncertainty and
related fields such as robust optimization and worst-case analysis.

And then there is the related severe uncertainty/robustness issue.

Info-Gap is presented and promoted as a methodology that seeks robust decisions under
severe uncertainty. I have shown that contrary to claims repeated in the Info-Gap literature,
there is no reason to believe that the solutions generated by Info-Gap are robust under
severe uncertainty. The fact is that Info-Gap does not deal with severe uncertainty, it
simply . . . ignores it.

So this essay is yet another attempt on my part to convince Info-Gap enthusiasts that
Info-Gap’s generic model is a simple Maximin model and that it does not deal properly
with severe uncertainty.

This essay is also motivated by Ben-Haim’s [2007] recent compilation of FAQs about
Info-Gap that refers to some of the questions that I have raised over the years.

The trouble is, however, that this compilation not only fails to address the specific

issues that require attention, it exacerbates the situation by providing wrong answers to
the two central questions.

The good news, however, is that now I can easily point to and explain the flaws in
Ben-Haim’s [2007] answers to the two central questions under consideration. In brief:

FAQ-1: Ben-Haim [2007] compares Info-Gap to the “wrong” Maximin model and this
leads him to the erroneous conclusion that Info-Gap is not a Maximin model.
The short version of the story is as follows.

Generic Info-Gap Model

α̂(rc) := max
q∈Q

max

{

α ≥ 0 : rc ≤ min
u∈U(α,ũ)

R(q, u)

}

“Wrong” Maximin model “Correct” Maximin model

r∗ := max
q∈Q

min
u∈U(α◦,ũ)

R(q, u) z∗ := max
q∈Q,α≥0

min
u∈U(α,ũ)

α · (rc � R(q, u))

Ben-Haim [2007] Sniedovich [2006]
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where

a � b :=

{

1 , a ≤ b

0 , a > b
, a, b ∈ R

It is easy to verify that Info-Gap’s generic model is equivalent to the “correct”
Maximin model.

FAQ-2: Ben-Haim [2007] erroneously argues that because the domain of the horizon of
uncertainty (α) is unbounded, Info-Gap’s risk analysis is not local, hence deals
with severe uncertainty.
The point to note here is that the largest admissible value of this parameter is
implicitly bounded by the performance constraint. Consequently, Info-Gap’s risk
analysis typically does not cover the total region of uncertainty.
In other words, Info-Gap is afflicted by what I call a No man’s Land Syn-

drome. The short version of the story is this:

Info-Gap’s generic model is completely oblivious to what occurs out-
side the region of uncertainty U(α̂(rc) + ε, ũ), ε > 0. It conducts a
Maximin analysis on U(α̂(rc), ũ) but takes no account whatsoever of
the remaining part of the total region of uncertainty.

Thus, the conclusion is that Info-Gap conducts a local risk analysis in the
neighborhood of the estimate ũ which means that it does not deal properly
with severe uncertainty. It ignores it. For example, consider this concrete
instance:

ũ = (0, 0)

U(α, ũ) =
{
u ∈ R2 : |u− ũ| ≤ α

}
, α ≥ 0

Q = {0,−1}
R(q, u) = q − u1 − u2

rc = −
√

50
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Figure 1: Concrete Instance of an Info-Gap model

The optimal solution generated by this Info-Gap model is q = 0 which in turn
yields α̂(rc) = 5.
The same results will be generated if we change R(q, u) and let it take arbitrary

values for u /∈ U(α̂(rc) + ε, ũ), ε > 0 and for α ≥ α̂(rc) + ε we let U(α, ũ) be any
arbitrary set containing U(α̂(rc) + ε, ũ).
That is, the same results are generated regardless of what occurs outside the
region of uncertainty U(α̂(rc) + ε, ũ): Info-Gap simply ignores what happens
there.
Changing the scale of the picture to better reflect the fact that the total region
of uncertainty is unbounded in this example, we obtain the picture shown in
Figure 2.
The tiny white circle represents the largest region of uncertainty that actually
affects the results generated by Info-Gap, namely U(α̂(rc) + ε, ũ), and the large
gray area surrounding it represents Info-Gap’s No Man’s Land. The results
generated by Info-Gap do not depend on how small/large the no man’s land is,
nor on how the performance function R behaves on this area.

Ben-Haim [2007] claims that this risk analysis is not local in nature!
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Figure 2: Info-Gap’s No Man’s Land

In the next two sections I give detailed answers to the two central questions under
consideration. Then, in the appendix, I explain in detail the errors in Ben-Haim’s [2007]
answers to these very questions.

2 FAQ-1: Is Info-Gap a Maximin model?

The answer is a resounding YES!

Here are the two models under examination, namely the well known Wald’s Maximin
model 1 and the relatively young Info-Gap model:

Wald’s Maximin model Generic Info-Gap model

z∗ := max
d∈D

min
s∈S(d)

f(d, s) α̂(rc) := max
q∈Q

max

{

α ≥ 0 : rc ≤ min
u∈U(α,ũ)

R(q, u)

}

The question is: what is the relationship between these two mathematical objects?

So consider this:

Maximin Theorem: Info-Gap’s generic model is an instance of the famous classical
Wald’s Maximin model. �

To prove this result we show that a particular choice of the triplet M = (D, S, f)
comprising the Maximin model produces an instance of the general model that is equivalent
to Info-Gap’s generic model.

To this end it is instructive to introduce the following indicator/penalty function2 as-
sociated with the reward satisficing constraint of the Info-Gap model:

ϕ(q, α, u | rc) :=

{

α , rc ≤ R(q, u)

−∞ , rc > R(q, u)
, q ∈ Q, α ≥ 0, u ∈ U(α, ũ) (1)

This function returns the value α if the reward constraint is satisfied by the triplet
(q, α, u) given the stipulated value of rc. Otherwise it yields the (penalty) value −∞.

1Officially D denotes the decision space, S(d) denotes the set of feasible states associated with decision
d, and f denotes the objective function under consideration.

2For anyone unfamiliar with this important and useful modeling tool, our old and trusted aid, −∞, is
deployed here as a penalty to discourage the decision maker from selecting a pair (q, α) that violates the
constraint rc ≤ R(q, u), ∀u ∈ U(α, ũ). It is deployed routinely in optimization theory for such purposes.

4



Maximin Proof.

α̂(rc) : = max
q∈Q

max

{

α ≥ 0 : rc ≤ min
u∈U(α,ũ)

R(q, u)

}

(2)

= max
q∈Q,α≥0

min
u∈U(α,ũ)

ϕ(q, α, u | rc) (3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .QED

In other words, Info-Gap’s generic model is equivalent to the instance of Wald’s Max-
imin model that is specified by the following three simple objects:

· Decision Space: D = {(q, α) : q ∈ Q, α ≥ 0}.

· State Space: S(d) = U(α, ũ), d = (q, α) ∈ D.

· Objective function: f(d, s) = ϕ(q, α, u | rc), d = (q, α) ∈ D, s = u ∈ S(d).

Given the simplicity of the proof and the transparent recipe that it provides for trans-
lating Info-Gap’s generic model into an equivalent Maximin model, it is puzzling that
Info-Gap is still considered to be different from Maximin.

Indeed, it is amusing to read the discussion in the Info-Gap literature as to whether
Info-Gap is similar to but different from, or different from but similar to, Maximin.

In the appendix I explain the fundamental flaw in Ben-Haim’s [2007] analysis of the
relationship between Info-Gap and Maximin that mislead him to conclude that Info-Gap
is not an instance of Wald’s Maximin model.

3 FAQ-2: Does Info-Gap deal properly with severe

uncertainty?

The answer is a resounding NO!

To see more clearly why this is so let us examine a peculiar feature of Info-Gap’s generic
model and its ramifications. This feature has to do with the fact that Info-Gap’s generic
model is completely oblivious to what “happens” outside the largest admissible region
of uncertainty. That is, it takes no notice of the area outside the region of uncertainty
associated with the maximum robustness, namely the area outside the region U(α̂(rc), ũ).
We shall refer to this feature of Info-Gap as the No Man’s Land Syndrome.

This is illustrated graphically in Figure 3. The rectangle represents the total region of
uncertainty and the light-gray inner circle represent the region of uncertainty associated
with the maximum robustness α̂(rc), namely the region U(α̂(rc), ũ). Hence, the dark gray
area surrounding the light circle represents the region of uncertainty ignored by Info-Gap’s
analysis. We shall refer to this area of the total region of uncertainty as the no man’s land.
Note that ε can be arbitrarily small, but it must be strictly positive.

The results generated by Info-Gap’s generic model are not affected by how small/large
its no man’s land is, nor by how the performance function R behaves in this area.

Although this fact stares one in the face, we nevetheless prove it formally. So let U

denote the total region of uncertainty in question and consider this:

Definition: We refer to

U(α̂(rc), ũ) := U \ U(α̂(rc) + ε, ũ) , ε > 0 (4)

as Info-Gap’s No man’s land.
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Figure 3: Illustration of Info-Gap’s No Man’s Land Syndrome

By definition then, U(α̂(rc), ũ) denotes the area of the total region of uncertainty U that
is not covered by the region U(α̂(rc)+ε, ũ). The ε is required to ensure that U(α̂(rc)+ε, ũ)
contains a u′ such that R(q, u′) violates the performance constraint. It can be arbitrarily
small, but must be strictly positive3.

No Man’s Land Theorem: Info-Gap’s generic model is invariant with its no man’s
land. That is, Info-Gap’s generic model generates the same results regardless of how
small/large the no man’s land U(α̂(rc), ũ) is, and how R behaves on U(α̂(rc), ũ).

No Man’s Land Proof: This is an immediate consequence of the nesting property of
the regions of uncertainty, namely of the fact that

α > α′ −→ U(α′, ũ) ⊆ U(α, ũ) (5)

observing that this property entails that

rc > min
u∈U(α,ũ)

R(q, u) , ∀q ∈ Q, α > α̂(rc) (6)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QED

The following is an immediate implication of this result.

Invariance Theorem: The results generated by Info-Gap’s generic model are invariant

with the size of the total region of uncertainty U. That is, the model generates the same
results if we change U to any U′ such that U(α̂(rc) + ε, ũ) ⊆ U′, ε > 0.

This feature is illustrated graphically in Figure 4 where the small circle represents
U(α̂(rc), ũ). Info-Gap’s analysis and results are the same for all cases where the total
region of uncertainty (U) contains U(α̂(rc) + ε, ũ). The same analysis is conducted for U,
U′ and U′′. In fact, we can increase the size of the region of uncertainty indefinitely and
this will have no impact whatsoever on the results generated by Info-Gap.

So much then for a methodology claiming to seek robust decisions under severe

uncertainty!

3If you are allergic to epsilons and suchlike, simply ignore the technicalities and regard it as a device
used to ensure that the results generated by Info-Gap’s generic model are not influenced by how R behaves
on U(α̂(rc), ũ).
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Figure 4: Illustration of the Invariance Theorem, α∗ = α̂(rc).

The following simple example illustrates this point. Let

U = R2 (7)

ũ = (0, 0) (8)

U(α, ũ) = {u ∈ U : |u− ũ| ≤ α} , α ≥ 0 (9)

=
{
u ∈ R2 : u2

1 + u2
2 ≤ α2

}
(10)

Q = {1, 2} (11)

R(q, u) =

{

6− q (u2
1 + u2

2) , u2
1 + u2

2 ≤ 32

negotiable , u2
1 + u2

2 > 32
(12)

rc = 2 (13)

Since clearly (by inspection) the maximum robustness is not greater than 3, we are
indifferent to the result of the negotiations that will eventually determine the values that
R will take for u outside U(3, ũ). Hence,

α̂(rc) := max
q∈{1,2}

max

{

α ≥ 0 : 2 ≤ min
u2
1+u2

2≤α2

{
6− q

(
u2

1 + u2
2

)}
}

(14)

Then by inspection, the optimal decision is q∗ = 1 and the resulting (optimal) robust-
ness is equal to α̂(rc) = 2. Therefore, in this case Info-Gap’s no man’s land is

U(α̂(rc), ũ) = U \ U(α̂(rc) + ε, ũ) (15)

= R2 \ U(2 + ε, (0, 0)) (16)

= R2 \
{
u ∈ R2 : u2

1 + u2
2 ≤ (2 + ε)2

}
(17)

To keep things simple, let ε = 1, in which case we have

U(α̂(rc), ũ) = R2 \
{
u ∈ R2 : u2

1 + u2
2 ≤ 32

}
(18)

=
{
u ∈ R2 : u2

1 + u2
2 > 32

}
(19)

We dedicate the next page of this article to a graphic display of the situation. The gray
disc represents the safety area associated with ε = 1.

In the appendix I explain in detail the flaws in Ben-Haim’s [2007] analysis that mislead
him to conclude that Info-Gap’s robustness is not local in nature.

4 An illustrative example

I have observed for some time now that Info-Gap users are greatly surprised when shown
how absurd the results generated by Info-Gap can be. So, the following simple illustrative
example is designed to drive this home.
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Figure 5: The Situation Room for U(α̂(rc), ũ).
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It reads as follows:

U = [−7, 7] (20)

ũ = 0 (21)

U(α, ũ) = {u ∈ [−7, 7] : |u− ũ| ≤ α} , α ≥ 0 (22)

=

{

[−α, α] , 0 ≤ α ≤ 7

[−7, 7] , α > 7
(23)

Q = {1, 2} (24)

R(q, u) =

{

6− |u| , q = 1

5− 0.75|u| , q = 2
(25)

rc = 2 (26)

Formally we thus have:

α̂(rc) := max
q∈{1,2}

max

{

α ≥ 0 : 2 ≤ min
u∈U(α,0)

R(q, u)}
}

(27)

Since it is clear that u > 4 violates the performance constraint for both q = 1 and
q = 2, it follows that we can safely restrict the analysis to α ≤ 4, hence

α̂(rc) = max
q∈{1,2}

max

{

4 ≥ α ≥ 0 : 2 ≤ min
−α≤u≤α

R(q, u)

}

(28)

Both decisions are optimal, yielding α̂(rc) = 4. There are two critical (worst case)
values for u in U(α̂(rc), ũ), namely −4 and 4, and the no man’s land region here is the set
U(α̂(rc), ũ) = {u ∈ R : 4 + ε < |u| ≤ 7} for some ε > 0. In other words, Info-Gap “could
not care less” about what goes on in the region {u ∈ R : 4 + ε < |u| ≤ 7}. This model is
described graphically in Figure 6 for some small ε, say ε = 0.00001 (just kidding!).

No man’s landNo man’s land

R(q, u)

q = 1

q = 2

u

rc = 2

ũ = 0

| | | | | | ||||||||

1 2 3 4 5 6 7−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

U(α̂(rc), ũ)

Figure 6: Illustrative Example

As is amply clear, in this case Info-Gap will generate the same results if we change the
given total region of uncertainty from U = [−7, 7] to say U = R and let the performance
function R take arbitrary values on the new no man’s land region {u ∈ R : |u| ≥ 4+ ε}.

In short, in this particular example, Info-Gap is totally blind to what occurs outside
the region of uncertainty [−4, 4].
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No man’s land
5 < u <∞

No man’s land
−∞ < u < −5

R(q, u)

q = 1

q = 2

u

rc = 2

ũ = 0

| | | | | | ||||||||

1 2 3 4 5 6 7−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

U(α̂(rc), ũ) = [−4, 4]

U = (−∞,∞)

Figure 7: An intriguing Info-Gap model and the results it generates.

Next consider the intriguing Info-Gap model specified by:

U = R (29)

ũ = 0 (30)

U(α, ũ) = {u ∈ R : |u− ũ| ≤ α} , α ≥ 0 (31)

= [−α, α] (32)

Q = {1, 2} (33)

rc = 2 (34)

R(q, u) =







6− |u| , q = 1,−5 ≤ u ≤ 5

5− 0.75|u| , q = 2,−5 ≤ u ≤ 5

No Man’s Land , |u| > 5

(35)

Figure 7 shows the basic ingredients of the model and the results it generates. Note
that as before, both decisions are optimal, α̂(rc) = 4, and formally ε = 1.

But to give the reader a better perspective on what goes on here, it is instructive to
present the results graphically using a more realistic scaling. This is difficult because the
No Man’s Land is unbounded and the region covered by the Info-Gap analysis, namely
U(α̂(rc), ũ) = [−4, 4], is bounded. A compromise is shown in Figure 8.

No man’s land: 5 < u <∞No man’s land: −∞ < u < −5
U(α̂(rc), ũ) = [−4, 4]

U = (−∞,∞)

Figure 8: An intriguing Info-Gap model and the results it generates.

This analysis demonstrates that we are dealing here with either pure magic or pure
nonsense, or both: we are dealing here with a model whose raison d’être is to tackle
severe uncertainty, but the model altogether ignores the behavior of the performance
function R on a huge (unbounded) no man’s land (|u| > 5), comprising practically the
entire region of uncertainty under consideration.

Yet, Info-Gap contends that it properly handles severe uncertainty. What is more,
we are expected to accept that the Info-Gap solution is robust, even though under severe
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uncertainty the estimate ũ is a poor indication of the true value of u and is likely to be
substantially wrong.

Isn’t this voodoo4 decision-making?

Remark:

Some readers may object that I am using a contrived, unrealistic example especially con-
cocted to support my criticism of Info-Gap. In particular, my choice of a problem where
the total region of uncertainty U is unbounded may be dismissed as mischievous.

So let us remind ourselves that according to Ben-Haim [2007, p. 2]:

2. An info-gap analysis is not based on an estimate of the true horizon
of uncertainty. That is, the info-gap model of uncertainty is not a single set,
U(α, ũ). Rather, an info-gap model is a family of nested sets, U(α, ũ) for all
α ≥ 0. The family of sets is usually unbounded1. Thus an info-gap model is
not a “local analysis of risk” since the family of sets expands, usually bound-
lessly, as the unknown horizon of uncertainty, α, grows. Info-gap theory is not

a worst-case analysis, since there is no known worst case in an info-gap model
of uncertainty.

1 The family of sets is bounded only when there is a physical or definitional limit of
the range of variation, such as probabilities not being larger than unity, or masses
not being negative.

Clearly then, an unbounded total region of uncertainty should be regarded as the
“usual” case as far as Info-Gap is concerned. I therefore do not see any difficulty in using
unbounded regions of uncertainty in my illustrative examples. To the contrary, given Ben-
Haim’s [2007] unequivocal statement about the scope of Info-Gap’s region of uncertainty,
I find it necessary to consider examples featuring unbounded regions of uncertainty.

5 Conclusions

The bottom line then is this:

· Info-Gap’s generic model is neither new nor radically different. It is a simple instance
of the famous Wald’s Maximin model.

· Info-Gap’s uncertainty model does not deal properly with severe uncertainty, it sim-
ply ignores it.

· There is no ground to contend that the solutions generated by Info-Gap are robust
under severe uncertainty.

· The sooner the Info-Gap community accepts these facts, the better.

· This is long overdue.

· Info-Gap users should consult the worst-case analysis and robust optimization litera-
ture (eg Rosenblatt and Lee [1987], Kouvelis and Yu [1997], Rustem and Howe [2002],
Ben-Tal et al [2006]) for guidance on robust optimization under severe uncertainty.

4Here voodoo means “a belief, theory or method that lacks sufficient evidence or proof.” (Encarta
World English Dictionary)
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My experience with Info-Gap over the past four years has confirmed my long held views
on the role of mathematical modeling in decision-making, particularly under severe
uncertainty.

Indeed, Info-Gap is an excellent example of how wrong things can go due to a failure to

appreciate the mathematical modeling aspects of Maximin, Worst-Case Analysis

and Severe Uncertainty.

Appendix

In this appendix I explain in detail some of the flaws in Ben-Haim’s [2007] answers to
the two central questions under consideration.

A Is Info-Gap’s generic model a Maximin model?

Yes, it definitely is!

Ben-Haim [2007, p. 4] now concedes that Info-Gap’s generic model is closely related to
Maximin:

Info-gap robust-satisficing and the max-min decision strategy are not the same,
but there is a close relation between them.

The point to note here is that to substantiate this claim Ben-Haim does not refute my
argument that Info-Gap is a specific instance of Wald’s Maximin model. Instead he
compares Info-Gap to a different (“wrong”) Maximin model that he constructed for this
purpose.

Although Ben-Haim [2007] does not explicitly define the Maximin model he has in
mind, a bit of detective work reveals that this model is of the following form:

r∗ := max
q∈Q

min
u∈U(α◦,ũ)

R(q, u) (36)

where α◦ denotes the “estimated uncertainty” (level of robustness) employed to control
the robustness required of (or stipulated by) the Maximim model.

It is patently clear that this model seeks to maximize the worst (smallest) value of the
reward R(q, u).

Now, this leaves one gasping!

Since Info-Gap’s model seeks to maximize robustness, common sense dictates that it
should be compared to a Maximin model that also seeks to maximize robustness, indeed
the same type of robustness. What is the point of comparing Info-Gap’s generic model –
whose aim is to maximize robustness – to a Maximin model whose aim is to maximize
reward?!

The flaw in Ben-Haim’s [2007] analysis is fundamental: it compares kangaroos
with Vegemite. That is, the analysis compares a model designed to maximize
robustness with a model designed to maximize reward only to discover that
they are different!
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Employing Ben-Haim’s [2007] logic, we can effortlessly prove all kind of interesting
propositions. For example, the proof that the expression x+x2, x ∈ R is not a polynomial
would be straightforward. It would run as follows: As we all know, P (x) := x is a
polynomial. Since clearly x+ x2 is not equivalent to P (x), we must conclude that x+ x2

is not a polynomial.

Another odd feature of Ben-Haim’s [2007] Maximin model is that it takes no notice of
the crucial role that the performance constraint rc ≤ R(q, u), ∀u ∈ U(α, ũ) plays in the
Info-Gap model.

So one cannot help but wonder about the logic behind Ben-Haim’s [2007] comparison
of two models that do not address the same goal nor do they incorporate the same require-
ments. If we do not care about these details, we can easily construct 20465765 (and more)
maximin models that are different from the Info-Gap model.

This, however, is not the issue here.

The issue here is whether a Maximin model exists that does precisely what the Info-Gap
model does. Therefore, the only valid comparison in this context is one where the Maximin
model seeks to maximize robustness, rather than reward.

The Maximin Proof shows in no uncertain terms that when Info-Gap is
compared with a proper Maximin model, this model does exactly what the
Info-Gap model does, hence Info-Gap is an instance of Wald’s Maximin model.

In summary then:
The question regarding the relationship between Info-Gap and Maximin is not whether
there exist Maximin models that are different from the Info-Gap model. Of course there
are such models. After all, there are numerous instances of Wald’s generic Maximin model
and Ben-Haim’s [2007] model is just one such case.

Rather, the question is whether there exists a Maximin model that is equivalent to the
generic Info-Gap model. And the answer to this question is a resounding YES.

In fact, for our purposes it is instructive to rewrite the equivalent Maximin model (3)
as follows:

z∗ := max
q∈Q,α≥0

min
u∈U(α,ũ)

α · (rc � R(q, u)) (37)

where

a � b :=

{

1 , a ≤ b

0 , a > b
, a, b ∈ R := (−∞,∞) (38)

assuming (just a technicality) that rc ≤ R(q, ũ), ∀q ∈ Q.
This formulation of the objective function of the equivalent Maximin model is more

explicit about what the Maximin model does and it underscores its obvious equivalence to
the generic Info-Gap model. This then is the picture:

Generic Info-Gap Model

α̂(rc) := max
q∈Q

max

{

α ≥ 0 : rc ≤ min
u∈U(α,ũ)

R(q, u)

}

Wrong Maximin model Correct Maximin model

r∗ := max
q∈Q

min
u∈U(α◦,ũ)

R(q, u) z∗ := max
q∈Q,α≥0

min
u∈U(α,ũ)

α · (rc � R(q, u))

Ben-Haim [2007] Sniedovich [2006]

13



And if you are allergic to multiplicative objective functions, you may prefer the following
equivalent “additive” Maximin model:

z∗ := max
q∈Q,α≥0

min
u∈U(α,ũ)

{α− ψ(q, u, α)} (39)

where

ψ(q, u, α) :=

{

0 , rc ≤ R(q, u)

α , rc > R(q, u)
, q ∈ Q, u ∈ U(α, ũ), α ≥ 0 (40)

To sum up, Info-Gap’s decision model is neither new nor radically different from existing
models. It is a simple instance of the famous Wald’s Maximin model.

I should also point out that Ben-Haim’s [2007a, slide 47] even goes so far as to claim
that Info-Gap’s robust-satisficing approach “beats max-min in competition”.

What can one say to that?!

B Does Info-Gap deal properly with severe uncer-

tainty?

No, it does not!

In this section I address some of the flaws in Ben-Haim’s [2007] answer to the “Severe
uncertainty/Robustness” question under consideration.

B.1 Is Info-Gap’s robustness analysis local?

Yes, it is!

How else would you describe an analysis that defines robustness as the maximum

admissible deviation from a given fixed point , namely from ũ ?!?!

Info-Gap’s robustness analysis is inherently local precisely because it defines the ro-

bustness of a decision as the maximum admissible deviation from a given fixed point

ũ that the decision can withstand. This means that Info-Gap’s robustness analysis is local
even if α̂(rc) is relatively large: it is conducted in the locale of a given fixed point.

The local nature of Info-Gap’s robustness is manifested in the phrasing of the question
that Info-Gap is supposed to answer:

α

u′

ũ

U(α, ũ) How much can u′ deviate from ũ –
measured by α – without causing
a violation in the performance con-
straint rc ≤ R(q, u), ∀u ∈ U(α, ũ)?

Figure 9: On the local nature of Info-Gap’s robustness analysis

In fact, it is more instructive to phrase the question without any reference to the point
u′. That is, the local nature of Info-Gap analysis is clearly exposed by observing that α̂(rc)
represents the maximum admissible deviation from ũ.
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αũ

U(α, ũ) How much can we deviate from ũ –
as measured by α – without causing
a violation in the performance con-
straint rc ≤ R(q, u), ∀u ∈ U(α, ũ)?

Figure 10: On the local nature of Info-Gap’s robustness analysis

Thus, consider the following phrasing of the question that Info-Gap’s analysis is sup-
posed to answer:

The related claim that Info-Gap’s analysis is not “necessarily” local confuses two facts,
namely:

· Info-Gap’s robustness analysis is local in nature.

· In certain situations α̂(rc) can be relatively large.

These represent two different aspects of the Info-Gap model that should be handled
with care.

(i) The local nature of Info-Gap’s robustness analysis.
This is a consequence of the Nested structure of the regions of uncertainty. To see
that this is so, let α(u, ũ) denote the distance of point u ∈ U from the estimate ũ,
namely set

α(u, ũ) := min{α ≥ 0 : u ∈ U(α, ũ)} , u ∈ U (41)

That is, α(u, ũ) denotes the smallest value of α such that u ∈ U(α, ũ). We can regard
α(u, ũ) as the “distance of u from ũ ”.

The distinction between points in U(α̂(rc), ũ) and points in the associated No Man’s

Land U(α̂(rc), ũ) is their distance from the estimate ũ:

u ∈ U(α̂(rc), ũ)←→ α(u, ũ) > α̂(rc) (42)

u ∈ U(α̂(rc), ũ)←→ α(u, ũ) ≤ α̂(rc) (43)

In short, Info-Gap’s robustness analysis “ignores” points in the region of uncertainty
whose distance from ũ is larger than α̂(rc). As shown in Figure 3, Figure 4 and Figure
9, this is a “local” analysis par excellence.

(ii) The “size” of the optimal region of uncertainty U(α̂(rc), ũ).
Needless to say, the actual value of α̂(rc) is problem dependent and can vary signifi-
cantly from problem to problem. But as explained above, this does not alter the fact
that Info-Gap’s robustness analysis is inherently local.

Interestingly, according to Ben-Haim’ [2007, p. 2]:

2. An info-gap analysis is not based on an estimate of the true horizon of
uncertainty. That is, the info-gap model of uncertainty is not a single set,
U(α, ũ). Rather, an info-gap model is a family of nested sets, U(α, ũ) for all
α ≥ 0. The family of sets is usually unbounded1. Thus an info-gap model
is not a “local analysis of risk” since the family of sets expands, usually
boundlessly, as the unknown horizon of uncertainty, α, grows. Info-gap
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theory is not a worst-case analysis, since there is no known worst case in
an info-gap model of uncertainty.

1 The family of sets is bounded only when there is a physical or definitional limit
of the range of variation, such as probabilities not being larger than unity, or
masses not being negative.

Ben-Haim [2007, p. 2 ]

This is odd. Very odd.

To see this, let us look again at Info-Gap’s generic model:

α̂(rc) := max
q∈Q

max

{

α ≥ 0 : rc ≤ min
u∈U(α,ũ)

R(q, u)

}

(44)

If indeed α is unbounded (from above) and can grow indefinitely, then how is it that
the generic Info-Gap model sets the maximization of α to be its goal?!?

The flaw in Ben-Haim’s [2007] argument is this.

The statement α ≥ 0 in no way entails that all the regions of uncertainty U(α, ũ), α ≥
0 are actually examined by Info-Gap and that they affect the results generated by
the model (44). The point is – as clearly stated by Info-Gap’s generic model – that
the admissible values of α must also satisfy the performance requirement

rc ≤ R(q, u) , ∀u ∈ U(α, ũ) (45)

The largest admissible value of α is α̂(rc), hence the largest region of uncertainty
considered by the Info-Gap model is U(α̂(rc), ũ). In other words, the analysis con-
ducted by the Info-Gap model is confined to the immediate neighborhood of ũ
specified by U(α̂(rc), ũ) as shown in Figure 11, where the regions of uncertainty are
represented by circles of various sizes, all centered at the same point, namely
at ũ. The largest circle represents α = α̂(rc).

ũ

No Man’s land

No Man’s land

U(α̂(rc), ũ)

Figure 11: The local nature of Info-Gap’s robustness analysis

Note that the neighborhood shown in this picture is finite in size, yet it consists
of infinitely many regions of uncertainty, whose sizes vary (continuously) from 0 to
α̂(rc).
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In summary, the fact that the formulation of the Info-Gap model involves infinitely
many region of uncertainty in no way implies that the size of the neighborhood of ũ
that is actually involved in the analysis of a given problem is unbounded. In fact,
in all cases where the results are not trivial, the size of the largest neighborhood
examined by the model is finite and is equal to the maximum robustness α̂(rc).

Info-Gap’s robustness analysis is therefore inherently local , centered as it is at a

single point ũ ∈ U. Indeed, usually the results generated by Info-Gap’s generic model

vary with ũ. As I pointed out on many occasions, it is regrettable that this fact is not
manifested in the notation used by Info-Gap. It would have been far more informative to
incorporate ũ in α̂(q, rc), say by denoting the robustness of decision q by α̂(q|rc, ũ).

Remarks:

(i) As indicated above, Ben-Haim [2007] goes out of his way to point out that Info-Gap’s
total uncertainty region, namely U, is “. . . usually unbounded . . . ”.

This means that “usually” the largest region of uncertainty participating in the Info-
Gap analysis, namely U(α̂(rc), ũ), is extremely small in size compared to the size
of U. In fact in this “usual” case Info-Gap’s no man’s land, namely U(α̂(rc), ũ), is
unbounded and is much larger in size than U(α̂(rc), ũ) (see Figure 5).

(ii) Figure 12 illustrates the distinction between local and non-local “coverage”. The
total area covered in both cases (local and non-local) is the same. However, in the
local case the region covered is concentrated in the immediate neighborhood of the
estimate ũ, whereas in the non-local case the area covered is split into 12 smaller
sub-regions that are spread all over the total region of uncertainty.

ũ

Local

ũ

Non-local

Figure 12: Local vs Non-local coverage

(iii) A local analysis of the type conducted by Info-Gap makes sense if there is reason to
believe that the true value of u is much more likely to be close to the value of the
estimate ũ than to other values of u in the total region of uncertainty. But Info-Gap
assumes the precise opposite: the estimate ũ is a poor indicator of the true value of u
and is likely to be substantially wrong. In other words, there is a sharp contradiction
between the local nature of the analysis conducted by Info-Gap and the severe nature
of the uncertainty that Info-Gap is purported to deal with.

(iv) If the uncertainty is indeed severe – the estimate ũ is poor and likely to be substan-
tially wrong – it may be necessary to cover the total region of uncertainty with a
grid of points, or very small areas, as shown in Figure 13. This grid consists of 200
uniformly distributed circles whose total area is equal to the gray area of the local
coverage scheme shown in Figure 12.
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ũ

Figure 13: Grid-like non-local coverage of the region of uncertainty

(v) It is important to note that the term “local” does not imply that the area covered is
by necessity small in comparison to the total area of the region of uncertainty. Local
coverage may well be large, but it is still local in that it consists of an area (often a
continuum) concentrated around the estimate ũ.

B.2 Does Info-Gap “simply sweep major risks under the car-

pet”?

Indeed, this is precisely what Info-Gap does!

What else can we say about a methodology that – under severe uncertainty – does
no more than conduct a worst-case analysis in the neighborhood of a poor estimate that

is likely to be substantially wrong?

Those remaining unconvinced by this simple argument may wish to take another look
at Figure 2 and Figure 5

B.3 Does Info-Gap generate robust decisions?

There is no reason to believe that this is so!

Info-Gap is crystal clear about the fundamental difficulty dogging decision-making un-
der severe uncertainty: the parameters we have are poor indications of the true values they
represent and are likely to be substantially wrong (Ben-Haim [2006, pp. 280-281]). Along
the same lines,

1. Info-gap theory is useful precisely in those situations where our best models
and data are highly uncertain, especially when the horizon of uncertainty is
unknown. In contrast, if we have good understanding of the system then we
don’t need info-gap theory, and can use probability theory or even completely
deterministic models. It is when we face severe Knightian uncertainty that we
need info-gap theory. Ben-Haim [2007, p. 2 ]

Hence, throughout this discussion we assume exactly this:

Under severe uncertainty the estimate ũ of Info-Gap’s generic model is a poor
indication of the true value of u and is likely to be substantially wrong.

Therefore, the fundamental question is this:

Given that ũ is a poor indication of the true value of u and is likely to be
substantially wrong, what can we claim about the robustness of decision q,
denoted α̂(q, rc), as defined by Info-Gap?
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Recall that α̂(q, rc) is defined by Info-Gap as follows:

α̂(q, rc) := max

{

α ≥ 0 : rc min
u∈U(α,ũ)

≤ R(q, u)

}

, q ∈ Q (46)

To answer this question we apply the universal maxim that, unless special measures are
taken to remedy the situation, if the values of the parameters of a model are wrong then
the results generated by the model are equally likely to be wrong 5. In the framework of
the Info-Gap model, the picture then is this:

Wrong ũ−→ Info-Gap Model
Wrong α̂(q, rc)−→ (47)

This in turn triggers the following logical progression:

· Info-Gap’s decision model conducts its business in the immediate neighborhood of
the estimate ũ, namely in U(α, ũ).

· Under severe uncertainty ũ is a poor indication of the true value of u and is likely to
be substantially wrong.

· Hence, the value of the robustness of decision q ∈ Q generated by Info-Gap, namely
α̂(q, rc), is a poor indication of the true robustness of q and is likely to be substantially
wrong.

· For the same reason the decision selected by the Info-Gap model, namely

q∗(rc, ũ) := arg max
q∈Q

α̂(q, rc) (48)

is a poor indication of the true value of the optimal decision and is likely to be
substantially wrong.

In short, there is no reason to believe that under severe uncertainty the solutions gen-
erated by Info-Gap are robust: there is no guarantee that a decision that is robust in the
neighborhood of the poor estimate ũ is robust in the neighborhood of the true value of u,
or in any other neighborhood of the region of uncertainty.

Remark

The accepted wisdom in the Info-Gap literature is that one of Info-Gap’s most attractive
features is that it provides decision-makers with answers to questions of the following type:

· How wrong can my models and data be without jeopardizing the
quality of the outcome?

· How wrong can my model and its parameters be before jeopardizing
the quality of decisions made on the basis of this model?

· How wrong could my model be before I should change my decisions?

The trouble is that, as explained above, Info-Gap (being a Maximin model) can provide
adequate answers to such questions only if the estimate ũ is a good indication of the true
value of u. But in situations where ũ is a poor indication of the true value of u and is likely
to be substantially wrong (for which Info-Gap is designed), there is no ground whatsoever
for the assertion that Info-Gap provides adequate answers to the above questions.
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True location of treasure

Poor estimate of

Figure 14: An Info-Gap Treasure Hunt

As I have been pointing out all along, the picture is this:
In other words, Info-Gap conducts its analysis somewhere in Victoria, whereas for all

we know, the true (but unknown!) location of the treasure can be anywhere in Australia,
say . . .West Australia, as shown in the picture.

There is another way to explain this misconception:

The Info-Gap literature confuses two different contexts where the concept
robustness is used to represent ability to withstand changes in the way
a system operates:

· Ability to cope with deviations from a given fixed point.

· Ability to cope with severe uncertainty.

Info-Gap deals with the ability of a system to withstand deviations of u from a

given fixed point ũ. This is totally different from dealing with the ability of a system

to withstand severe uncertainty in the true value of u (perform well over the region

of uncertainty not knowing where the true value is located).

For the purposes of our discussion it suffices to say that the deviation question ad-
dressed by Info-Gap has nothing to do with uncertainty, much less severe uncertainty.
Indeed, I can pose the three popular questions listed above in the context of a perfectly
deterministic system, as is the practice in all OR textbook dealing with sensitivity

analysis.

A more detailed discussion on the misconception in the Info-Gap literature regard-
ing the difference between robustness against deviation vs robustness against Severe

Uncertainty is forthcoming. Stay tuned.

B.4 Is Info-Gap a Worst-Case Analysis type of method?

Yes, it is!

Ben-Haim [2007, p. 2] claims that

Info-gap theory is not a worst-case analysis, since there is no known worst case
in an info-gap model of uncertainty.

Since we have already shown that Info-Gap’s generic model is a Maximin model, it is
manifest that Info-Gap is indeed a worst-case analysis par excellence. Nevertheless, . . .

The worst-case analysis conducted by Info-Gap is local in nature: it is conducted on
each region of uncertainty U(α, ũ), 0 ≤ α ≤ α̂(rc) (one at a time, so to speak). In fact, we

5This is a corollary of the famous universal Garbage In → Garbage Out Principle.
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can formally state this as a classic Maximin operation as follows:

α̂(q, rc) = max
α≥0

worst-case analysis
︷ ︸︸ ︷

min
u∈U(α,ũ)

α · (rc � R(q, u)) , q ∈ Q (49)

That is, the robustness of decision q is equal to the largest value of α such that the
worst u in U(α, ũ) satisfies the performance constraint (45). It is the min operation in
(49) that carries out the worst-case analysis in a typical Maximin manner. And in the
framework of the Info-Gap model itself, we have:

α̂(q, rc) = max






α ≥ 0 : rc ≤

worst-case analysis
︷ ︸︸ ︷

min
u∈U(α,ũ)

R(q, u)






(50)

or in words,

α̂(q, rc) = max{α : worst element of u in U(α, rc) satisfies the performance constraint}

Note that in the usual worst-case manner, the admissibility of the region of uncertainty
U(α, ũ) associated with a given value of α, hence the admissibility of the value of α itself,
is determined by the performance of the worst element of this region, rather than say by
the “average performance” on this region, or the “median” performance on this region, or
“half the sum of the best performance and the worst performance” on this region, or the
performance of the “most likely” element in this region, or . . .

If this is not a worst-case analysis par excellence, what is?!

B.5 Is there a worst case in an Info-Gap model of uncertainty?

Of course there is!

As explained in the preceding section, for any (q, α) pair for which α̂(q, rc) exists there
is a worst case in U(α, ũ). That is,

u(q, α) := arg min
u∈U(α,ũ)

R(q, u) , q ∈ Q, α ≥ 0 (51)

is the worst element of U(α, ũ) with respect to (q, α).

Remark:

The Info-Gap literature, eg Ben-Haim [2007], (erroneously) argues that there is no worst
case in an Info-Gap model because α is unbounded above. This argument apparently
construes “worst case” to mean “the worst element u in the total region of uncertainty
U with regard to a given decision q”, namely,

u(q) := arg min
u∈U

R(q, u) , q ∈ Q (52)

observing that if U is unbounded then there is no guarantee that u(q) exists.

However, it should be noted that this issue is totally irrelevant because according to
Info-Gap the robustness of a decision q involves the requirement constraint rc ≤
R(q, u), ∀u ∈ U(α, ũ), so α̂(q, rc) may exist even if u(q) does not.

For example, consider again the following simple case:
In this case we have U = R2 and therefore u(q) does not exist. In other words, there is

no worst u in U with respect to R(q, ·) because R(q, ·) is not bounded below on U.
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ũ = (0, 0)

U(α, ũ) =
{
u ∈ R2 : |u− ũ| ≤ α

}
, α ≥ 0

Q = {0,−1}
R(q, u) = q − u1 − u2

rc = −
√

50

u1

u2

ũ

−

−

−

−

−

−

1

2

3

4

5

6

| | | | | |

1 2 3 4 5 6

R
(q, u) =

r
c , q

=
0

Figure 15: An Unbounded Info-Gap model

So what?

Insofar as the Info-Gap model is concerned, this is not an issue. For every (q, α) pair
there is a worst u in U(α, ũ):

u(q, α) : = arg min
u∈U(α,ũ)

R(q, u) , q ∈ Q, α ≥ 0 (53)

= arg min
u∈U(α,ũ)

q − u1 − u2 (54)

= arg min
u∈R2

|u−ũ|≤α

q − u1 − u2 (55)

=

(
α√
2
,
α√
2

)

(56)

Therefore, the worst value of R(q, u) in U(α, ũ) is equal to

min
u∈U(α,ũ)

R(q, u) = R(q, u(q)) = q −
√

2α (57)

and consequently the robustness of q is equal to the largest value of α such that R(q, u(q)) ≥
rc. This yields

α̂(q, rc) = max
{

α ≥ 0 : rc ≤ q −
√

2α
}

(58)

hence

α̂(q, rc) =
q − rc√

2
(59)

and therefore for rc = −
√

50 we obtain

α̂(q, rc) =







5 , q = 0
√

50− 1√
2

, q = −1
, q ∈ Q = {0,−1} (60)

=







5 , q = 0

5− 1√
2

, q = −1
(61)

Thus, the optimal decision is q = 0 and α̂(rc) = 5.
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